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LIMIT PROPERTIES AND INEQUALITIES INVOLVING
K-POLYGAMMA FUNCTIONS

MORGAN YINDOBIL ZUBIL1 AND KWARA NANTOMAH2

Abstract. Let ψ(a)
k (z) be the k-polygamma function of order a ∈ N. In this paper, we

establish some limit properties and inequalities involving ψ(a)
k (z). In some instances, the

inequalities provide bounds for certain ratios involving ψ
(a)
k (z). In the other instances,

they provide bounds (in terms of Hurwitz zeta function) for the harmonic, arithmetic and
geometric means involving the functions ψ(a)

k (z) and ψ
(a)
k (1/z). The established results

serve as generalization and extension of some recent results. Largely, the techniques
employed in proving our results depend on monotonicity properties of certain functions
involving the k-polygamma functions.

1. Introduction

The Euler’s integral of second kind, which is commonly referred to as the gamma function,
is defined as

Γ(z) =
∫ ∞

0
sz−1e−sds,

= lim
r→∞

r!rz

z(z + 1)(z + 2) . . . (z + r) ,

for z > 0. The logarithmic derivative of the gamma function which is called the digamma
function is defined as

ψ(z) = Γ′(z)
Γ(z) = −γ +

∫ ∞

0

e−s − e−zs

1 − e−s
ds, (1.1)

=
∫ ∞

0

(
e−s

s
− e−zs

1 − e−s

)
ds, (1.2)

= −γ − 1
z

+
∞∑

n=1

z

n(n+ z) , (1.3)
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where γ is the Euler-Mascheroni constant. Derivatives of the digamma function are referred
to polygamma functions and they are defined as

ψ(a)(z) = da

dza
ψ(z) = (−1)a+1

∫ ∞

0

sae−zs

1 − e−s
ds, (1.4)

= (−1)a+1
∞∑

n=0

a!
(n+ z)a+1 , (1.5)

= (−1)a+1a!ζ(a+ 1, z), (1.6)

for a ∈ N, where ζ(r, z) is the Hurwitz zeta function. Specifically, ζ(r, 1) = ζ(r) where ζ(r)
is the Riemann zeta function. Also, in [12], it has been established that

ψ(a)(z) = (−1)a+1
[(a− 1)!

za
+ a!

2za+1 +
∫ ∞

0

(
s

es − 1 − 1 + s

2

)
sa−1e−zsds

]
. (1.7)

The k-gamma function (also known as the k-analogue of the gamma function) was intro-
duced by Díaz and Pariguan [14] and it is defined as

Γk(z) =
∫ ∞

0
sz−1e− sk

k ds, (1.8)

= lim
r→∞

r!kr(rk)
z
k

−1

(z)r,k
, (1.9)

for k > 0 and z ∈ C\kZ, where (z)r,k = z(z+k)(z+2k) . . . (z+(r−1)k) is the Pochhammer
k-symbol. The k-gamma function satisfies the basic identities

Γk(z + k) = zΓk(z),
Γk(k) = 1,

Γk(z) = k
z
k

−1Γ(z
k

),

Γk(ak) = ka−1(a− 1)!, a ∈ N.

The k-digamma function is defined as the logarithmic derivative of the k-gamma function.
It is given by any of the following forms (see [18,19,22,23,28,32])

ψk(z) = Γ′
k(z)

Γk(z) = ln k − γ

k
− 1
z

+
∞∑

r=1

z

rk(rk + z) , (1.10)

= ln k − γ

k
+

∞∑
r=0

( 1
rk + k

− 1
rk + z

)
, (1.11)

= ln k − γ

k
+
∫ ∞

0

e−ks − e−zs

1 − e−ks
ds, (1.12)

= ln k − γ

k
+
∫ 1

0

sk−1 − sz−1

1 − sk
ds, (1.13)

and satifies the identities

ψk(z + k) = 1
z

+ ψk(z), (1.14)

ψk(k) = ln k − γ

k
, (1.15)
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ψk(z) = ln k
k

+ 1
k
ψ(z
k

). (1.16)

The k-polygamma functions are defined as [19,28]

ψ
(a)
k (z) = da

dza
ψk(z) = (−1)a+1

∞∑
r=0

a!
(rk + z)a+1 , (1.17)

= (−1)a+1
∫ ∞

0

sae−zs

1 − e−ks
ds, (1.18)

= −
∫ 1

0

(ln s)asz−1

1 − sk
ds, (1.19)

where a ∈ N and satisfies the identities (see also [33])

ψ
(a)
k (z + k) = (−1)aa!

za+1 + ψ
(a)
k (z), (1.20)

ψ
(a)
k (z) = 1

ka+1ψ
(a)(z

k
), (1.21)

= (−1)a+1a!
ka+1 ζ(a+ 1, z

k
). (1.22)

The k-polygamma functions play a crucial role in the theory of special functions and
mathematical analysis. Due to their strong connections with other special functions, as well
as their relationship with some famous mathematical constants, they found applications in
other areas such as statistics and mathematical physics. In recent times, the k-polygamma
functions have been studied along different paths. For instance, see [31,32,35,37,39].

Let H(u, v), G(u, v) and A(u, v) respectively be the harmonic mean, geometric mean and
arithmetic mean of u and v, which are defined as

H(u, v) = 2uv
u+ v

, G(u, v) =
√
uv and A(u, v) = u+ v

2 .

Gautschi [15] proved that the harmonic mean inequality

H (Γ(z),Γ(1/z)) ≥ 1 (1.23)

holds for z > 0. By virtue of (1.23), the inequalities

A (Γ(z),Γ(1/z)) ≥ 1, (1.24)

G (Γ(z),Γ(1/z)) ≥ 1, (1.25)
are obtained for z > 0. Other researchers have considered some refinements and general-
izations of the inequalities (1.23), (1.24) and (1.25) due to their usefulness in mathematical
analysis [1, 2, 4–7,16,17].

Alzer and Jameson [8] established striking companions of (1.23), (1.24) and (1.25) by
proving that the inequalities

H (ψ(z), ψ(1/z)) ≥ −γ, (1.26)
A (ψ(z), ψ(1/z)) < −γ, z ̸= 1, (1.27)
G (ψ(z), ψ(1/z)) < γ, z ̸= 1, (1.28)

hold for z > 0.
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Yildirim [30] established generalizations of (1.26), (1.27) and (1.28) by proving that

H (ψk(z), ψk(1/z)) ≥ ψk(1), (1.29)

A (ψk(z), ψk(1/z)) < ψk(1), z ̸= 1, (1.30)
G (ψk(z), ψk(1/z)) ≤ ψk(1), (1.31)

hold for z > 0. The results (1.29), (1.30) and (1.31) are improvements of the results of Yin
et al. [36] concerning the same subject.

Nantomah et al. [27] extended these results to the trigamma function by proving that
the inequalities

H
(
ψ′(z), ψ′(1/z)

)
≤ π2

6 , (1.32)

A
(
ψ′(z), ψ′(1/z)

)
≥ π2

6 , (1.33)

G
(
ψ′(z), ψ′(1/z)

)
≥ π2

6 , (1.34)
hold for z > 0.

Das and Swaminathan [13] considered a more general results involving the polygamma
functions. Specifically, they proved that, for m ∈ N, the inequalities

(−1)mH
(
ψ(m)(z), ψ(m)(1/z)

)
≥ (−1)mψ(m)(1), (1.35)

(−1)mA
(
ψ(m)(z), ψ(m)(1/z)

)
< (−1)mψ(m)(1), z ̸= 1, (1.36)

G
(
ψ(m)(z), ψ(m)(1/z)

)
> ψ(m)(1), z ̸= 1, (1.37)

hold for z > 0. From the work of Das and Swaminathan, inequalities (1.32), (1.33) and
(1.34) are recovered as particular cases.

In a recent work, Nantomah [26] established results which are equivalent to (1.35), (1.36)
and (1.37) by using different techniques.

Motivated by [26] and [30], the goal of this current work is to extend and generalize the
results of [26] and [30] respectively to the the k-polygamma functions. For analogous results
relating to other special functions, interested readers may refer to the works [11,20,21,24,
25,30,36].

2. Results and Discussion

Theorem 2.1. The following limits statements hold for all a ∈ N.

lim
z→0

za+1ψ
(a)
k (z) = (−1)a+1a!, (2.1)

lim
z→∞

zaψ
(a)
k (z) = (−1)a+1 (a− 1)!

k
, (2.2)

lim
z→0

z
ψ

(a+1)
k (z)
ψ

(a)
k (z)

= −(a+ 1), (2.3)

lim
z→∞

z
ψ

(a+1)
k (z)
ψ

(a)
k (z)

= −a, (2.4)
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lim
z→0

(
ψ

(a+1)
k (z)

)2

ψ
(a)
k (z)ψ(a+2)

k (z)
= a+ 1
a+ 2 , (2.5)

lim
z→∞

(
ψ

(a+1)
k (z)

)2

ψ
(a)
k (z)ψ(a+2)

k (z)
= a

a+ 1 . (2.6)

Proof. From (1.20), we have

lim
z→0

za+1ψ
(a)
k (z) = lim

z→0

[
za+1ψ

(a)
k (z + k) − (−1)aa!

]
= (−1)a+1a!

which proves (2.1). Next, by making use of (1.7) and (1.21), we have

ψ
(a)
k (z) = 1

ka+1ψ
(a)(z

k
)

= (−1)a+1

ka+1

[
ka (a− 1)!

za
+ ka+1 a!

2za+1 +
∫ ∞

0

(
s

es − 1 − 1 + s

2

)
sa−1e− zs

k ds

]
= (−1)a+1

[1
k

(a− 1)!
za

+ a!
2za+1 + 1

ka+1

∫ ∞

0

(
s

es − 1 − 1 + s

2

)
sa−1e− zs

k ds

]
.

Hence

lim
z→∞

zaψ
(a)
k (z) = (−1)a+1 (a− 1)!

k
,

which proves (2.2). Next, by applying (2.1), we obtain

lim
z→0

z
ψ

(a+1)
k (z)
ψ

(a)
k (z)

= lim
z→0

za+2ψ
(a+1)
k (z)

za+1ψ
(a)
k (z)

= (−1)a+2(a+ 1)!
(−1)a+1a! = −(a+ 1)

which proves (2.3). Next, by applying (2.2), we obtain

lim
z→∞

z
ψ

(a+1)
k (z)
ψ

(a)
k (z)

= lim
z→∞

za+1ψ
(a+1)
k (z)

zaψ
(a)
k (z)

=
(−1)a+2 a!

k

(−1)a+1 (a−1)!
k

= −a

which proves (2.4). Next, by applying (2.1), we obtain

lim
z→0

(
ψ

(a+1)
k (z)

)2

ψ
(a)
k (z)ψ(a+2)

k (z)
= lim

z→0

za+2ψ
(a+1)
k (z).za+2ψ

(a+1)
k (z)

za+1ψ
(a)
k (z).za+3ψ

(a+2)
k (z)

= limz→0 z
a+2ψ

(a+1)
k (z). limz→0 z

a+2ψ
(a+1)
k (z)

limz→0 za+1ψ
(a)
k (z). limz→0 za+3ψ

(a+2)
k (z)

= (−1)a+2(a+ 1)!(−1)a+2(a+ 1)!
(−1)a+1a!(−1)a+3(a+ 2)!

= (a+ 1)!(a+ 1)!
a!(a+ 2)!

= a+ 1
a+ 2
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which proves (2.5). Finally, by applying (2.2), we obtain

lim
z→∞

(
ψ

(a+1)
k (z)

)2

ψ
(a)
k (z)ψ(a+2)

k (z)
= lim

z→∞
za+1ψ

(a+1)
k (z).za+1ψ

(a+1)
k (z)

zaψ
(a)
k (z).za+2ψ

(a+2)
k (z)

= limz→∞ za+1ψ
(a+1)
k (z). limz→∞ za+1ψ

(a+1)
k (z)

limz→∞ zaψ
(a)
k (z). limz→∞ za+2ψ

(a+2)
k (z)

=
(−1)a+2 a!

k .(−1)a+2 a!
k

(−1)a+1 (a−1)!
k .(−1)a+3 (a+1)!

k

= a!a!
(a− 1)!(a+ 1)!

= a

a+ 1
which proves (2.6). □

Remark 2.1. The limit (2.2) and other limits equivalent to (2.5) and (2.6) earlier appeared
in [38]. Also, some more general results concerning these limits have been established in
[34] and [35]. Here, we provided a very simple way of obtaining the limits.

Theorem 2.2. For z > 0 and a ∈ N, the function

T (z) = z
ψ

(a+1)
k (z)
ψ

(a)
k (z)

(2.7)

is strictly increasing and that being so, the inequality

−a+ 1
z

<
ψ

(a+1)
k (z)
ψ

(a)
k (z)

< −a

z
(2.8)

holds.

Proof. It has been shown in Lemma 2 of [9] and [3] that, for u > 0 and a ∈ N, the function

f(u) = u
ψ(a+1)(u)
ψ(a)(u)

is strictly increasing. By using the identity (1.21), we have

T (z) = z
ψ

(a+1)
k (z)
ψ

(a)
k (z)

= z

k

ψ(a+1)( z
k )

ψ(a)( z
k )

.

Hence T (z) is strictly increasing. The increasing property of T (z) and the limit properties
in equations (2.3) and (2.4) imply that

−(a+ 1) = lim
z→0

T (z) < T (z) < lim
z→∞

T (z) = −a

which yields the inequality (2.8). □
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Remark 2.2. It is known in [10] that, a positive function h is said to be GG-convex or
geometrically convex if and only if zh′(z)/h(z) is increasing. Theorem 2.2 implies that, for
odd a, the function ψ

(a)
k (z) is geometrically convex. This is because ψ(a)

k (z) > 0 if a is odd
and ψ

(a)
k (z) < 0 if a is even.

Theorem 2.3. For z > 0 and a ∈ N, the function

Q(z) =

(
ψ

(a+1)
k (z)

)2

ψ
(a)
k (z)ψ(a+2)

k (z)
(2.9)

is strictly decreasing and as a result, the inequality

a

a+ 1 <

(
ψ

(a+1)
k (z)

)2

ψ
(a)
k (z)ψ(a+2)

k (z)
<
a+ 1
a+ 2 (2.10)

holds.

Proof. It has been proved in Theorem 2 of [29] that, for u > 0 and a ∈ N, the function

g(u) =

(
ψ(a+1)(u)

)2

ψ(a)(u)ψ(a+2)(u)

is strictly decreasing. By using the identity (1.21), we have

Q(z) =

(
ψ

(a+1)
k (z)

)2

ψ
(a)
k (z)ψ(a+2)

k (z)
=

(
ψ(a+1)( z

k )
)2

ψ(a)( z
k )ψ(a+2)( z

k )
.

Hence Q(z) is strictly decreasing. The decreasing property of Q(z) and the limit properties
in equations (2.5) and (2.6) imply that

a

a+ 1 = lim
z→∞

Q(z) < Q(z) < lim
z→0

Q(z) = a+ 1
a+ 2

which yields the inequality (2.10). □

Remark 2.3. Generalized forms of Theorem 2.3 have been obtained in [34] and [35]. Also,
an inequality equivalent to (2.10) was established in [38] by using a different procedure.

Remark 2.4. The left hand side of (2.10) implies that

ψ
(a)
k (z)ψ(a+2)

k (z) − 2
(
ψ

(a+1)
k (z)

)2
< 0. (2.11)

Lemma 2.1. For z > 0 and a ∈ N, the function

A(z) = z
ψ

(a+1)
k (z)(
ψ

(a)
k (z)

)2 (2.12)

is strictly decreasing if a is odd and strictly increasing if a is even.
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Proof. It has been shown in Lemma 2.3 of [26] that, for u > 0 and a ∈ N, the function

h(u) = u
ψ(a+1)(u)(
ψ(a)(u)

)2
is strictly decreasing if a is odd and strictly increasing if a is even. Using (1.21), we obtain

A(z) = z
ψ

(a+1)
k (z)(
ψ

(a)
k (z)

)2 = ka+1.
z

k

ψ(a+1)( z
k )(

ψ(a)( z
k )
)2 .

Hence, A(z) is strictly decreasing if a is odd and strictly increasing if a is even. □

Theorem 2.4. Suppose that z > 0 and a ∈ N. Then

2ψ(a)
k (z)ψ(a)

k (1/z)
ψ

(a)
k (z) + ψ

(a)
k (1/z)

≤ a!
ka+1 ζ

(
a+ 1, 1

k

)
(2.13)

is valid if a is odd and

2ψ(a)
k (z)ψ(a)

k (1/z)
ψ

(a)
k (z) + ψ

(a)
k (1/z)

≥ − a!
ka+1 ζ

(
a+ 1, 1

k

)
(2.14)

is valid if a is even. Under each situation, equality is arrived at when z = 1.

Proof. The condition for equality in (2.13) and (2.14) is easy to establish. On grounds of
this, we shall only prove the results for z ∈ (0, 1) ∪ (1,∞). Let K(z) be defined as

K(z) = 2ψ(a)
k (z)ψ(a)

k (1/z)
ψ

(a)
k (z) + ψ

(a)
k (1/z)

where a ∈ N and z ∈ (0, 1) ∪ (1,∞). Then

K′(z)
K(z) = ψ

(a+1)
k (z)
ψ

(a)
k (z)

− 1
z2
ψ

(a+1)
k (1/z)
ψ

(a)
k (1/z)

−
ψ

(a+1)
k (z) − 1

z2ψ
(a+1)
k (1/z)

ψ
(a)
k (z) + ψ

(a)
k (1/z)

which upon rearrangement gives rise to

z
[
ψ

(a)
k (z) + ψ

(a)
k (1/z)

] K′(z)
K(z) = z

ψ
(a+1)
k (z)
ψ

(a)
k (z)

ψ
(a)
k (1/z) − 1

z

ψ
(a+1)
k (1/z)
ψ

(a)
k (1/z)

ψ
(a)
k (z).

Further rearrangement gives

z

[
1

ψ
(a)
k (z)

+ 1
ψ

(a)
k (1/z)

]
K′(z)
K(z) = z

ψ
(a+1)
k (z)(
ψ

(a)
k (z)

)2 − 1
z

ψ
(a+1)
k (1/z)(
ψ

(a)
k (1/z)

)2

:= O(z).

Now assume that a is odd. Since the function A(z) in Lemma 2.1 is decreasing when a is
odd, we conclude that O(z) > 0 if z ∈ (0, 1) and O(z) < 0 if z ∈ (1,∞). It is worth noting
that if z ∈ (0, 1), then z < 1/z and if z ∈ (1,∞), then z > 1/z. Thus, K′(z) > 0 if z ∈ (0, 1)



LIMIT PROPERTIES AND INEQUALITIES INVOLVING K-POLYGAMMA FUNCTIONS 45

and K′(z) < 0 if z ∈ (1,∞). Hence, K(z) is increasing on (0, 1) and decreasing on (1,∞).
Therefore, for z ∈ (0, 1) ∪ (1,∞), we have

K(z) < lim
z→1

K(z) = ψ
(a)
k (1) = a!

ka+1 ζ

(
a+ 1, 1

k

)
which proves the inequality in (2.13). Next, assume that a is even. Likewise, since the
function A(z) in Lemma 2.1 is increasing for even a, we conclude that O(z) < 0 if z ∈ (0, 1)
and O(z) > 0 if z ∈ (1,∞). In this way, K′(z) < 0 if z ∈ (0, 1) and K′(z) > 0 if z ∈ (1,∞).
Hence, K(z) is decreasing on (0, 1) and increasing on (1,∞). Therefore, for z ∈ (0, 1)∪(1,∞),
we have

K(z) > lim
z→1

K(z) = ψ(a)(1) = − a!
ka+1 ζ

(
a+ 1, 1

k

)
which proves the inequality in (2.14). This completes the proof of Theorem 2.4. □

Theorem 2.5. Let z > 0 and a ∈ N. Then the inequality√
ψ

(a)
k (z)ψ(a)

k (1/z) ≥ a!
ka+1 ζ

(
a+ 1, 1

k

)
(2.15)

is valid. Equality is arrived at when z = 1

Proof. The condition for equality is easy to establish. For this reason, let
D(z) = ψ

(a)
k (z)ψ(a)

k (1/z) for a ∈ N and z ∈ (0, 1) ∪ (1,∞). Then

z
D′(z)
D(z) = z

ψ
(a+1)
k (z)
ψ

(a)
k (z)

− 1
z

ψ
(a+1)
k (1/z)
ψ

(a)
k (1/z)

:= ∆(z).

Since T (z) is increasing (see Theorem 2.2), we conclude that ∆(z) < 0 if z ∈ (0, 1) and
∆(z) > 0 if z ∈ (1,∞). Consequently, D′(z) < 0 if z ∈ (0, 1) and D′(z) > 0 if z ∈
(1,∞). That is, D(z) is decreasing on (0, 1) and increasing on (1,∞). Therefore, for
z ∈ (0, 1) ∪ (1,∞), we have

D(z) > lim
z→1

D(z) =
(
ψ

(a)
k (1)

)2
=
[
a!
ka+1 ζ

(
a+ 1, 1

k

)]2

which completes the proof of Theorem 2.5. □

Remark 2.5. Results analogous to the results of Theorem 2.5 were obtained in Theorem 3.2
of [38] by using different procedures.

Lemma 2.2. Let z > 0 and a ∈ N. Then the function

E(z) = zψ
(a+1)
k (z). (2.16)

is strictly increasing if a is odd and strictly decreasing if a is even.

Proof. It has been shown in Lemma 2.7 of [26] that, for u > 0 and a ∈ N, the function

q(u) = uψ(a+1)(u)
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is strictly increasing if a is odd and strictly decreasing if a is even. By applying (1.21), we
obtain

E(z) = zψ
(a+1)
k (z) = 1

ka+1
z

k
ψ

(a+1)
k (z

k
).

Hence, E(z) is strictly increasing if a is odd and strictly decreasing if a is even. □

Theorem 2.6. Suppose that z > 0 and a ∈ N. Then

ψ
(a)
k (z) + ψ

(a)
k (1/z)

2 ≥ a!
ka+1 ζ

(
a+ 1, 1

k

)
(2.17)

is valid if a is odd and

ψ
(a)
k (z) + ψ

(a)
k (1/z)

2 ≤ − a!
ka+1 ζ

(
a+ 1, 1

k

)
(2.18)

is valid if a is even. Under each situation, equality is arrived at when z = 1.

Proof. The condition for equality is easy to establish. For this reason, let U(z) = ψ
(a)
k (z) +

ψ
(a)
k (1/z) for a ∈ N and z ∈ (0, 1) ∪ (1,∞). Then

zU′(z) = zψ
(a+1)
k (z) − 1

z
ψ

(a+1)
k (1/z)

:= θ(z).

Now, assume that a is odd. Since the function E(z) in Lemma 2.2 is increasing when a is
odd, we conclude that θ(z) < 0 if z ∈ (0, 1) and θ(z) > 0 if z ∈ (1,∞). These imply that,
U(z) is decreasing on (0, 1) and increasing on (1,∞). Therefore, for z ∈ (0, 1) ∪ (1,∞), we
obtain

U(z) > lim
z→1

U(z) = 2ψ(a)
k (1) = 2

[
a!
ka+1 ζ

(
a+ 1, 1

k

)]
which proves (2.17). By the same approache, assume that a is even. Because the function
E(z) in Lemma 2.2 is decreasing for even a, we conclude that θ(z) > 0 if z ∈ (0, 1) and
θ(z) < 0 if z ∈ (1,∞). These imply that, U(z) is increasing on (0, 1) and decreasing on
(1,∞). Therefore, for z ∈ (0, 1) ∪ (1,∞), we obtain

U(z) < lim
z→1

U(z) = 2ψ(a)
k (1) = −2

[
a!
ka+1 ζ

(
a+ 1, 1

k

)]
whichproves (2.18). This completes the proof of Theorem 2.6. □

Remark 2.6. Results equivalent to the results of Theorem 2.6 were obtained in Lemma 2.5
of [38] by using different procedures.

3. Conclusion

In this paper, we established some limit properties involving the k-polygamma function,
ψ

(a)
k (z) where z > 0 and a ∈ N. By using the limits, we established bounds for certain

ratios involving ψ
(a)
k (z). Furthermore, we established bounds (in terms of Hurwitz zeta

function) for the harmonic, arithmetic and geometric means involving the functions ψ(a)
k (z)

and ψ
(a)
k (1/z). Our results serve as generalizations and extensions of some recent results.
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The present results could inspire further research on the subject. Lastly, we pose the
following open problem.

Open Problem: Among other things, Bouali [11] provided bounds for

H (ψq(z), ψq(1/z)) ,

A (ψq(z), ψq(1/z)) ,
G (ψq(z), ψq(1/z)) ,

where z > 0 and ψq(z) is the q-digamma function. Taking inspiration from this, find bounds
for

H
(
ψ(r)

q (z), ψ(r)
q (1/z)

)
,

A
(
ψ(r)

q (z), ψ(r)
q (1/z)

)
,

G
(
ψ(r)

q (z), ψ(r)
q (1/z)

)
,

where z > 0, r ∈ N and ψ
(r)
q (z) is the q-polygamma function.
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