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A COMPREHENSIVE STUDY OF (s, P )-FUNCTIONS AND THEIR
APPLICATIONS TO MIDPOINT OF HERMITE-HADAMARD-FEJÉR

TYPE INEQUALITIES

SERCAN TURHAN1

Abstract. Hermite-Hadamard-Fejér type inequalities are a general version of Hermite-
Hadamard inequalities, obtained under specific conditions with a certain type of weight
function. These inequalities are a fundamental part of analysis, rooted in convex
functions and existing inequalities. Moreover, (s, P )-functions represent a more generalized
form of convexity, inspired by s-convexity and P -functions. This study is designed to
derive midpoint-type Hermite-Hadamard-Fejér inequalities for (s, P )-functions. The newly
established inequalities not only reduce to midpoint-type Hermite-Hadamard inequalities
for (s, P )-functions, but also, in the special case where s = 1, the inequalities for P -
functions are obtained. Additionally, applications supported by graphical illustrations are
provided for general versions and special cases of derived inequalities.

1. Introduction

Convex functions are crucial in many fields, such as physics, economics,
mathematics, statistics, and medicine. They are regarded as one of the most important
subjects in modern research, as evidenced by the extensive literature dedicated to their study.
Because of their significance, many researchers have identified and investigated
different types of convex functions, leading to an ever-expanding body of work. A
notable class is that of h-convex functions, which has paved the way for the development
of various new types of convexity under specific circumstances. For example, Bombardelli
and Varošanec [2] explored the properties of h-convex functions in the context of Hermite-
Hadamard-Fejér inequalities, laying a foundation for further research. Similarly, Dragomir
and Pearce [6] provided a comprehensive treatment of Hermite-Hadamard inequalities and
their applications, which has inspired subsequent studies in the field. In addition, several
refinements and extensions have been proposed: Zabandan [20] introduced a new refinement
of the classical Hermite-Hadamard inequality for convex functions; Demir [4] developed
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new inequalities for functions whose second derivatives exhibit exponential trigonometric
convexity; Turhan [18] offered novel results based on the generalization of integral
inequalities for trigonometrically p-convex functions; and further contributions by Demir,
Maden, İşcan, and Kadakal [3] as well as by Baloch and İşcan [1] have advanced the
understanding of Simpson-type inequalities and Hermite-Hadamard type integral
inequalities for harmonically convex functions. Fundamentally, convex functions are based
on inequality conditions, which makes them invaluable for establishing new bounds and
facilitating optimization tasks.

The Hermite-Hadamard (H-H) inequality is well-established in the literature for a
continuous function ξ : I → R and for all k, l ∈ I ⊂ R where k < l:

ξ

(
k + l

2

)
≤ 1

l − k

l∫
k

ξ(x)dx ≤ ξ(k) + ξ(l)
2 .

If ξ is concave, the inequality is reversed [8]. This inequality has been applied to various
classes of convex functions, and through numerous lemma, theorems related to trapezoidal
and midpoint inequalities have been developed and presented.

In 1906, Fejér introduced a weighted version of the Hermite-Hadamard (H-H)
inequality, marking a significant development in the study of convex functions. This
advancement, known today as the H-H Fejér type inequality, extended the classical result by
incorporating weight functions, thereby enhancing the mathematical framework for
analyzing convex functions. Building on this foundation, several researchers have
provided refinements and generalizations that tailor these inequalities to specific weight
function conditions. For example, Iscan, Numan, and Bekar [9] established both Hermite-
Hadamard and Simpson-type inequalities for differentiable functions exhibiting
harmonically P -convex behavior, which broadened the scope of the classical inequality. Nu-
man and İşcan [14] introduced the concept of exponential type P -functions, offering further
generalizations in this area. Moreover, Kunt and İşcan [12] provided a comprehensive
treatment of Hermite–Hadamard–Fejér type inequalities for p-convex functions, while Latif,
Dragomir, and Momoniat [13] developed new Fejér type inequalities for harmonically convex
functions with applications to special means. In addition, refinements by Tseng, Hwang,
and Dragomir [17] have sharpened the existing inequalities, and Khan et al. [10] contributed
by deriving novel inequalities for s-convex functions. Finally, Dragomir and Fitzpatrick [5]
focused on the Hadamard inequalities for s-convex functions in the second sense, further
illuminating the intricate relationship between weight functions and the properties of con-
vex function inequalities. Collectively, these developments have significantly expanded our
understanding and application of convex function inequalities.

Theorem 1.1. [7] Assume ξ : [k, l] → R is a convex mapping. Then, the following inequality
is satisfied:

ξ

(
k + l

2

) l∫
k

g(x) dx ≤ 1
l − k

l∫
k

ξ(x)g(x) dx ≤ ξ(k) + ξ(l)
2

l∫
k

g(x) dx (1.2)
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where the function g : [k, l] → R is nonnegative, integrable, and exhibits symmetry about
x = k+l

2 .

The domain of convex analysis has been substantially extended with the introduction of
h-convexity, as outlined by Varosanec. This more generalized convexity class is based on a
modulating function h, which is non-negative and distinct from zero, providing a broader
scope than classical convexity.

Definition 1.1. [19] Let G, I be intervals and h ≠ 0, where h : G → R is a non-negative
function. The function ξ : I → R is called h-convex if for every k, l ∈ I and ω ∈ (0, 1), the
following inequality holds:

ξ(ωk + (1 − ω)l) ≤ h(ω)ξ(k) + h(1 − ω)ξ(l).

If ξ is concave, the inequality is reversed. Functions in this convexity class are denoted by
SX(h, I).

This advanced convexity class has led to the emergence of numerous new convexity types.
Among these are the (s, P )-functions introduced by İ. İşcan and S. Numan, along with the
associated Hermite-Hadamard inequalities and theorems:

Definition 1.2. [15] Let ξ : I → R be a non-negative function, where k, l ∈ I and ω ∈ [0, 1].
If the following inequality is satisfied, the function ξ is called a (s, P )-functions:

ξ(ωk + (1 − ω)l) ≤ [ωs + (1 − ω)s](ξ(k) + ξ(l)).

We will denote by Ps(I) the class of all (s, P )-functions on interval I. Clearly, the definition
of (1, P )-function is coincide with the definition of P-function.

Theorem 1.2. [15] Let s ∈ (0, 1] and ξ : [k, l] → R be a (s, P )-function. If k < l and
ξ ∈ L[k, l], then the following Hermite-Hadamard type inequalities hold:

2s−2ξ

(
k + l

2

)
≤ 1

k − l

∫ l

k
ξ(x) dx ≤ 2

s + 1 [ξ(k) + ξ(l)] .

Hermite-Hadamard-Fejér-type inequalities occupy a significant position in the literature,
offering a broad scope that includes the derivation of new inequalities and results for various
weight functions as well as inequalities obtained for certain fractional integrals. Additionally,
the (s, P )-convex function, a newly introduced class of convexity, has been observed to attract
considerable interest among researchers. By leveraging the lemma provided by M.Z. Sarıkaya,
significant new theorems have been established for midpoint-type Hermite-Hadamard-Fejér
inequalities. These results not only highlight the versatility of (s, P )-functions in producing
generalized inequalities but also offer new insights and deepen the understanding of the
underlying mathematical structures. Through this research, various (s, P )-functions were
generated, and their behaviors with respect to different weight functions were illustrated
through graphical representations.

Lemma 1.1. [16] Let ξ : I◦ ⊆ R → R be a differentiable function on I◦, and k, l ∈ I◦,
where k < l, and let g : [k, l] → [0, ∞) be a differentiable function. If ξ′ ∈ L[k, l], then the
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following equality holds:

1
l − k

l∫
k

ξ(x)g(x)dx − 1
l − k

ξ

(
k + l

2

) l∫
k

g(x)dx = (l − k)
1∫

0

m(ω)ξ′(ωk + (1 − ω)l)dω

for each ω ∈ [0, 1], where

m(ω) =


ω∫
0

g(ks + (1 − s)l)ds, ω ∈ [0, 1
2 ]

−
1∫

ω
g(ks + (1 − s)l)ds, ω ∈ [1

2 , 1].

Each theorem derived from this study provides novel upper bounds, offering deeper
analytical insights into the behaviour of different functions. These theorems yield results
that extend beyond the existing bounds of the literature, providing a broader spectrum
of applications. In addition, various examples have been illustrated through graphical
representations, showcasing the practical applications of these results. These graphs not
only demonstrate the accuracy of the derived inequalities but also serve as a visual tool for
understanding the behaviour of different function classes under the obtained theorems.

2. Hermite Hadamard Fejer type Inequality for (s, P )- Functions

Theorem 2.1. Let ξ : I◦ ⊂ R → R be a differentiable function on I◦, where k, l ∈ I◦ with
k < l, and let g : [k, l] → [0, ∞) be a differentiable function that is symmetric about k+l

2 .
Given that ξ′ is (s, P )-functions over the interval [k, l], the following inequality holds:∣∣∣∣∣ 1

l − k

∫ l

k
ξ(x)g(x)dx − 1

l − k
ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣
≤ 2

(l − k)s+1(s + 1)


l∫

k+l
2

g(x)
[
(x − k)s+1 − (l − x)s+1

]
dx

[∣∣ξ′(k)
∣∣+ ∣∣ξ′(l)

∣∣] . (2.1)

Proof. Considering Lemma 1.1, the absolute value of both sides of the expression is first
taken, and then the property that |ξ′| is an (s, P )-function is applied:∣∣∣∣∣ 1

l − k

∫ l

k
ξ(x)g(x)dx − 1

l − k
ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣
≤ (l − k)

1∫
0

|m(ω)|
∣∣ξ′(ωk + (1 − ω)l)

∣∣ dω

≤ (l − k)
1∫

0

|m(ω)| [ws + (1 − w)s]
[∣∣ξ′(k)

∣∣+ ∣∣ξ′(l)
∣∣] dω

is obtained. Using the definition of m(ω) as given in Lemma 1.1, the following inequality is
derived: ∣∣∣∣∣ 1

l − k

∫ l

k
ξ(x)g(x)dx − 1

l − k
ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣
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≤ (l − k)


∣∣∣∣∣∣∣∣

1
2∫

0

 ω∫
0

g(kn + (1 − n)l)dn

−
1∫

1
2

 1∫
ω

g(kn + (1 − n)l)dn


∣∣∣∣∣∣∣∣

× [ws + (1 − w)s]
[∣∣ξ′(k)

∣∣+ ∣∣ξ′(l)
∣∣] dω

}
≤ (l − k)


1
2∫

0

 ω∫
0

g(kn + (1 − n)l)dn

 [ws + (1 − w)s]
[∣∣ξ′(k)

∣∣+ ∣∣ξ′(l)
∣∣] dω

+
1∫

1
2

 1∫
ω

g(kn + (1 − n)l)dn

 [ws + (1 − w)s]
[∣∣ξ′(k)

∣∣+ ∣∣ξ′(l)
∣∣] dω

 . (2.2)

At this point, by changing the order of integration on the right side of the last inequality,
the following integrals are obtained:

T1 =

1
2∫

0

 ω∫
0

g(kn + (1 − n)l)dn

 [ws + (1 − w)s] dω

=

1
2∫

0

ω∫
0

g(kn + (1 − n)l) [ws + (1 − w)s] dn dω

=

1
2∫

0

1
2∫

n

g(kn + (1 − n)l) [ws + (1 − w)s] dω dn

=

1
2∫

0

g(kn + (1 − n)l)
[(1 − n)s − ns

s + 1

]
dn

=

1
2∫

0

g(kn + (1 − n)l)
[

(1 − n)s+1 − ns+1

s + 1

]
dn

= 1
(l − k)s+2(s + 1)

l∫
k+l

2

g(x)
[
(x − k)s+1 − (l − x)s+1

]
dx (2.3)

and

T2 =
1∫

1
2

 1∫
ω

g(kn + (1 − n)l)dn

 [ws + (1 − w)s] dω

=
1∫

1
2

1∫
ω

g(kn + (1 − n)l) [ws + (1 − w)s] dn dω
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=
1∫

1
2

n∫
1
2

g(kn + (1 − n)l) [ws + (1 − w)s] dω dn

=
1∫

1
2

g(kn + (1 − n)l)
[

ns+1 − (1 − n)s+1

s + 1

]
dn

=

1
2∫

0

g(kn + (1 − n)l)
[(1 − n)s − ns

s + 1

]
dn

= 1
(l − k)s+2(s + 1)

l∫
k+l

2

g(x)
[
(l − x)s+1 − (x − k)s+1

]
dx. (2.4)

Since g(x) is symmetric with respect to x = k+l
2 by hypothesis with g(x) = g(k + l − x) for

all x ∈ [k, l], it follows that

T1 = T2.

Substituting the expressions for T1 and T2 from (2.3) and (2.4) into inequality (2.2), the
proof is completed. □

Corollary 2.1. If g(x) = 1 is taken in inequality (2.1), the following result is obtained:∣∣∣∣∣∣ 1
l − k

l∫
k

ξ(x)dx − ξ

(
k + l

2

)∣∣∣∣∣∣ ≤ (l − k)(2s+1 − 1)
2s+1(s + 1)(s + 2)

[∣∣ξ′(k)
∣∣+ ∣∣ξ′(l)

∣∣] .

In particular, if s = 1 is also chosen in the obtained inequality, then we get the following
inequality [11, Theorem 2.2]:∣∣∣∣∣∣ 1

l − k

l∫
k

ξ(x)dx − ξ

(
k + l

2

)∣∣∣∣∣∣ ≤ l − k

8
[∣∣ξ′(k)

∣∣+ ∣∣ξ′(l)
∣∣] . (2.5)

Theorem 2.2. Let ξ : I
◦ ⊂ R → R be a function differentiable on I

◦ , where k, l ∈ I
◦
, k < l,

and let g : [k, l] → [0, ∞) be a differentiable function that is symmetric with respect to k+l
2 .

Under the condition that q ≥ 1, 1
p + 1

q = 1, and given that the function |ξ′|q is (s, P )-functions
on the interval [k, l], it follows that:∣∣∣∣∣ 1

l − k

∫ l

k
ξ(x)g(x)dx − 1

l − k
ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣ (2.6)

≤ 2 (l − k)1− 2
p


l∫

k+l
2

gp(x)
(

x − k + l

2

)
dx


1
p (

2s+1 − 1
2s+1(s + 1)(s + 2)

) 1
q [∣∣ξ′(k)

∣∣q +
∣∣ξ′(l)

∣∣q] 1
q .
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Proof. Taking Lemma 1.1 into consideration, by applying the absolute value and changing
the order of integration, the following inequality is derived:

∣∣∣∣∣ 1
l − k

∫ l

k
ξ(x)g(x)dx − 1

l − k
ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣
= (l − k)

∣∣∣∣∣∣
1∫

0

m(ω)ξ′(ωk + (1 − ω)l)

∣∣∣∣∣∣ dω

= (l − k)

∣∣∣∣∣∣∣∣
1
2∫

0

 ω∫
0

g(nk + (1 − n)l)dn

 ξ′(kω + (1 − ω)l)dω

−
1∫

1
2

 1∫
ω

g(nk + (1 − n)l)dn

 ξ′(kω + (1 − ω)l)dω

∣∣∣∣∣∣∣∣
≤ (l − k)

1
2∫

0

ω∫
0

g(nk + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣ dndω

+
1∫

1
2

1∫
ω

g(nk + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣ dndω

= (l − k)

1
2∫

0

1
2∫

n

g(nk + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣ dωdn

+
1∫

1
2

n∫
1
2

g(nk + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣ dωdn.

On the right-hand side of the obtained inequality, applying Hölder’s inequality and utilizing
the fact that the function |f ′|q is an (s, P )-function, the following inequality is derived:

∣∣∣∣∣∣ 1
l − k

l∫
k

ξ(x)g(x)dx − 1
l − k

ξ

(
k + l

2

) l∫
k

g(x)dx

∣∣∣∣∣∣
≤ (l − k)




1
2∫

0

1
2∫

n

gp(nk + (1 − n)l)dωdn


1
p


1
2∫

0

1
2∫

n

|ξ′(nk + (1 − n)l)|q dωdn


1
q

+

 1∫
1
2

n∫
1
2

gp(nk + (1 − n)l)dωdn


1
p
 1∫

1
2

n∫
1
2

|ξ′(nk + (1 − n)l)|q dωdn


1
q
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≤ (l − k)




1
2∫

0

gp(nk + (1 − n)l)
(

1
2 − n

)
dn


1
p


1
2∫

0

1
2∫

n

[ωs + (1 − ω)s]
[
|ξ′(k)|q + |ξ′(l)|q

]
dωdn


1
q

+

 1∫
1
2

gp(nk + (1 − n)l)
(

n − 1
2

)
dn


1
p
 1∫

1
2

n∫
1
2

[ωs + (1 − ω)s]
[
|ξ′(k)|q + |ξ′(l)|q

]
dωdn


1
q


≤ (l − k)




1
2∫

gp(x)
(

1
2 − n

)
dn


1
p


1
2∫

0

1
2∫

n

[ωs + (1 − ω)s]
[
|ξ′(k)|q + |ξ′(l)|q

]
dωdn


1
q

+

 1∫
1
2

gp(nk + (1 − n)l)
(

n − 1
2

)
dn


1
p
 1∫

1
2

n∫
1
2

[ωs + (1 − ω)s]
[
|ξ′(k)|q + |ξ′(l)|q

]
dωdn


1
q

 .

Utilizing the assumption that the function g(x) is symmetric with respect to x = k+l
2 and

acknowledging that |ξ′|q represents an (s, P )-function, the inequality is further refined to:∣∣∣∣∣ 1
l − k

∫ l

k

ξ(x)g(x)dx − 1
l − k

ξ

(
k + l

2

)∫ l

k

g(x)dx

∣∣∣∣∣
≤ (l − k)

 l∫
k+l

2

gp(x)
(

2x − l − k

2(l − k)2

)
dx


1
p [

|ξ′(k)|q + |ξ′(l)|q
] 1

q

×




1
2∫

0

1
2∫

n

(ωs + (1 − ω)s)dωdn


1
q

+

 1∫
1
2

n∫
1
2

(ωs + (1 − ω)s)dωdn


1
q



= (l − k)

 l∫
k+l

2

gp(x)
(

2x − l − k

2(l − k)2

)
dx


1
p [

|ξ′(k)|q + |ξ′(l)|q
] 1

q

×




1
2∫

0

(
(1 − n)s+1 − ns+1

s + 1

)
dn


1
q

+

 1∫
1
2

(
ns+1 − (1 − n)s+1

s + 1

)
dn


1
q

 .

The integrals obtained on the right side of the final expression are as follows:

1
2∫

0

(
(1 − n)s+1 − ns+1

s + 1

)
dn =

1∫
1
2

(
ns+1 − (1 − n)s+1

s + 1

)
dn = 2s+1 − 1

2s+1(s + 1)(s + 2) .

Thus, the proof is completed. □
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Corollary 2.2. If g(x) = 1 is taken in Theorem 2.2, the following inequality is obtained:∣∣∣∣∣∣ 1
l − k

l∫
k

ξ(x)dx − ξ

(
k + l

2

)∣∣∣∣∣∣ ≤ l − k

2
3
p

−1

(
2s+1 − 1

2s+1(s + 1)(s + 2)

) 1
q [∣∣ξ′(k)

∣∣q +
∣∣ξ′(l)

∣∣q] 1
q . (2.7)

By setting s = 1 in (2.7), the following inequality is obtained :∣∣∣∣∣∣ 1
l − k

l∫
k

ξ(x)dx − ξ

(
k + l

2

)∣∣∣∣∣∣ ≤ l − k

4
[∣∣ξ′(k)

∣∣q +
∣∣ξ′(l)

∣∣q] 1
q . (2.8)

The goal should be to achieve the optimal upper bound. Building on this, the obtained
theorem and results are derived below by employing the Power Mean inequality, which is a
consequence of Hölder’s inequality:

Theorem 2.3. Let ξ : I
◦ ⊂ R → R be a function differentiable on I

◦ , where k, l ∈ I
◦
, k < l,

and let g : [k, l] → [0, ∞) be a differentiable function that is symmetric to k+l
2 . Under the

condition that q > 1, and given that the function |ξ′|q are (s, P )-functions on the interval
[k, l], it follows that:∣∣∣∣∣∣ 1

l − k

l∫
k

ξ(x)g(x)dx − 1
l − k

ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣∣
≤ 2

(l − k)1+ s
q


l∫

k+l
2

(
x − k + l

2

)
g(x)dx


1− 1

q

×


l∫

k+l
2

g(x)
[
(x − k)s+1 − (l − x)s+1

]
dx


1
q [∣∣ξ′(k)

∣∣q +
∣∣ξ′(l)

∣∣q] 1
q . (2.9)

Proof. To determine an upper bound, we first take the absolute value of both sides of
the equality given in Lemma 1.1 and apply Fubini’s theorem. This yields the following
expression: ∣∣∣∣∣ 1

l − k

∫ l

k
ξ(x)g(x)dx − 1

l − k
ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣
= (l − k)

∣∣∣∣∣∣
1∫

0

m(ω)ξ′(ωk + (1 − ω)l)

∣∣∣∣∣∣ dω

= (l − k)

∣∣∣∣∣∣∣∣
1
2∫

0

 ω∫
0

g(nk + (1 − n)l)dn

 ξ′(kω + (1 − ω)l)dω

−
1∫

1
2

 1∫
ω

g(nk + (1 − n)l)dn

 ξ′(kω + (1 − ω)l)dω

∣∣∣∣∣∣∣∣
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≤ (l − k)

1
2∫

0

ω∫
0

g(nk + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣ dndω

+
1∫

1
2

1∫
ω

g(nk + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣ dndω

= (l − k)

1
2∫

0

1
2∫

n

g(nk + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣ dωdn

+
1∫

1
2

n∫
1
2

g(nk + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣ dωdn.

If the Power Mean inequality, which is a consequence of Hölder’s inequality, is applied to
the obtained inequality to achieve the desired upper bound, the following result is obtained:∣∣∣∣∣ 1

l − k

∫ l

k
ξ(x)g(x)dx − 1

l − k
ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣
≤ (l − k)




1
2∫

0

1
2∫

n

g(kn + (1 − n)l)dωdn


1− 1

q

×


1
2∫

0

1
2∫

n

g(kn + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣q dωdn


1
q

+


1∫

1
2

n∫
1
2

g(kn + (1 − n)l)dωdn


1− 1

q

×


1∫

1
2

n∫
1
2

g(kn + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣q dωdn


1
q



≤ (l − k)




1
2∫

0

g(kn + (1 − n)l)
(1

2 − n

)
dn


1− 1

q

×


1
2∫

0

1
2∫

n

g(kn + (1 − n)l)
∣∣ξ′(kω + (1 − ω)l)

∣∣q dωdn


1
q
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+


1∫

1
2

g(kn + (1 − n)l)
(

n − 1
2

)
dn


1− 1

q

×


1∫

1
2

n∫
1
2

g(kn + (1 − n)l)
∣∣ξ′(ωk + (1 − ω)l)

∣∣q dωdn


1
q

 .

Since the function |ξ′|q is (s, P )-functions, the following inequality is obtained:∣∣∣∣∣ 1
l − k

∫ l

k
ξ(x)g(x)dx − 1

l − k
ξ

(
k + l

2

)∫ l

k
g(x)dx

∣∣∣∣∣
≤ (l − k)




1
2∫

0

g(kn + (1 − n)l)
(1

2 − n

)
dn


1− 1

q

×


1
2∫

0

1
2∫

n

g(kn + (1 − n)l) [ωs + (1 − ω)s]
[∣∣ξ′(k)

∣∣q +
∣∣ξ′(l)

∣∣q] dωdn


1
q

+


1∫

1
2

g(kn + (1 − n)l)
(

n − 1
2

)
dn


1− 1

q

×


1∫

1
2

n∫
1
2

g(kn + (1 − n)l) [ωs + (1 − ω)s]
[∣∣ξ′(k)

∣∣q +
∣∣ξ′(l)

∣∣q] dωdn


1
q

 .

In the final inequality, after taking the integrals on the right side and applying the variable
change x = kn + (1 − n)l, the following inequality is obtained:∣∣∣∣∣ 1

l − k

∫ l

k

ξ(x)g(x)dx − 1
l − k

ξ

(
k + l

2

)∫ l

k

g(x)dx

∣∣∣∣∣
≤ (l − k)

[
|ξ′(k)|q + |ξ′(l)|q

] 1
q

×




1
2∫

0

g(kn + (1 − n)l)
(

1
2 − n

)
dn


1− 1

q


1
2∫

0

g(kn + (1 − n)l)
(

(1 − n)s+1 − ns+1

s + 1

)
dn


1
q

+

 1∫
1
2

g(kn + (1 − n)l)
(

n − 1
2

)
dn


1− 1

q
 1∫

1
2

g(kn + (1 − n)l)
(

ns+1 − (1 − n)s+1

s + 1

)
dn


1
q





12 SERCAN TURHAN

= (l − k)
[
|ξ′(k)|q + |ξ′(l)|q

] 1
q

×


 l∫

k+l
2

g(x)
(

1
2 − l − x

l − k

)
dx

l − k


1− 1

q
 l∫

k+l
2

g(x)
(

(x − k)s+1 − (l − x)s+1

(l − k)s+1(s + 1)

)
dx

l − k


1
q

+


k+l

2∫
k

g(x)
(

l − x

l − k
− 1

2

)
dx

l − k


1− 1

q


k+l
2∫

k

g(x)
(

(l − x)s+1 − (x − k)s+1

(l − k)s+1(s + 1)

)
dx

l − k


1
q
 .

By using the fact that the function g(x) is symmetric concerning x = k+l
2 , the proof is completed. □

Corollary 2.3. If g(x) = 1 is taken in Theorem 2.3, the following inequality is obtained:∣∣∣∣∣∣ 1
l − k

l∫
k

ξ(x)dx − ξ

(
k + l

2

)∣∣∣∣∣∣ ≤ (l − k)(2s+1 − 1)
1
q

22− 2
q

[
|ξ′(k)|q + |ξ′(l)|q

2s(s + 2)

] 1
q

. (2.10)

Taking s = 1 in (2.10), the following inequality is obtained [11, Theorem 2.4]:∣∣∣∣∣∣ 1
l − k

l∫
k

ξ(x)dx − ξ

(
k + l

2

)∣∣∣∣∣∣ ≤ l − k

22− 2
q

[
|ξ′(k)|q + |ξ′(l)|q

2

] 1
q

. (2.11)

3. Application

In the literature, visualizing the theorems or results obtained from studies through
graphs across different values and functions plays a significant role in understanding the
outcomes. In this section, we present graphical applications of the Hermite-Hadamard-Fejér
type inequalities obtained for different weighted functions. These graphs not only verify
the accuracy of the derived inequalities but also illustrate the upper bounds achieved by
incorporating Hölder’s inequality and the Power Mean inequality alongside the weighted
functions.

Example 3.1. The function ξ(x) = exp(x) and the Gaussian function g(x, k, l, a = 0.1) =
exp

(
−a

(
x − k+l

2

)2
)

, which is symmetrically defined with respect to k+l
2 , are considered.

Based on these functions, theorems (2.1), (2.2), and (2.3) are applied to the inequalities
(2.1) and (2.6), respectively, within different intervals and for each curve with parameters
s = 0.5, p = 3, and q = 2

3 . Furthermore, in the inequality (2.9), where the interval remains
the same, the case with s = 0.5 and q = 3 is considered, and it is demonstrated that the
theoretical inequalities hold for different values within the given intervals. Here, while k is
kept constant, graphs were obtained by calculating the values of l for 100 different points.
These graphs clearly illustrate not only the results provided by the classical inequality but
also how the Hölder and Power Mean inequalities behave, as evidenced through the graphical
results.
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Figure 1 Figure 2

Figure 3 Figure 4

Example 3.2. It is well known that when g(x) = 1 is taken in the Hermite-Hadamard-Fejér
type inequality, the classical Hermite-Hadamard inequalities are obtained. We also present
these results in our study. The inequalities we derived include (2.7), (2.8), and (2.10). Using
the same data as in Example (3.1), we plotted curves for both the left-hand and right-
hand sides of the obtained inequalities to compare the results. These graphs demonstrate
that the theoretically valid expressions are also satisfied in practice within the context of
Hermite-Hadamard type inequalities.

Figure 5 Figure 6
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Figure 7 Figure 8
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