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ABSTRACT. The main motivation of this study is to present new Hermite-Hadamard (HH)
type inequalities via a certain fractional operators. We have used an integral identity and
give new estimations of HH- type inequalities for differentiable m—convex and exponentially
convex mappings via Katugampola-fractional operator. Main findings of this study would
provide elegant connections and general variants of well known results established recently.

1. INTRODUCTION

Convexity is a very functional concept in programming, statistics and numerical analysis as
in many different branches of mathematics. In theory of inequality, the concept of convexity
exists in the proof of many classical inequalities, but has been a source of inspiration for
many new and useful inequalities.

Definition 1.1. [I4]. The function f : [c1, c2] = R, is said to be convex, if we have

fr+ 1 =t)7) <tf(k)+ (1 —1)f(r)

for all k,7 € [c1,c2] and t € [0, 1].

The definition of m—convex function, which is one of these general forms, is given as
follows.

Definition 1.2. [33] The mapping f : [0,b] — R is said to be m-convex m € [0, 1], if for
every x1, 22 € [0,b] and 7 € [0, 1], we have

frer +m(l = 7)x2) < 7f (21) + m(1 — 7) f(22).
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Definition 1.3. [1] A function f: I C R — R is said to be exponentially convex function,
if
f(o1) f(o2)
FUA=8or+80) =18 7 +E&
for all p1,02 € I, € Rand £ € [0,1].
For related results on convex functions and inequalities, see the papers ([10,25,29,30,30]).

In addition to the use of convex functions in many fields, inequality has increased its
reputation in theory with the Hermite-Hadamard inequality (See [14]). This celebrated
inequality can be stated as:

If a mapping f:J C R — R is a convex function on J and r,s € J, r < s, then

(55 2 [roan < {0210

2 s—r

Fractional calculus is a good expansion of the concept of derivative operator from integer
order n to arbitrary order a. Fractional derivative operators are accepted as the inverse
of fractional integral operators. Recently, the multiplicity of applications in many fields of
engineering, physics, statistics and mathematics has led to the study of fractional integrals
by many researchers. The fact that they are a more effective tool than the results in classical
analysis has resulted in more use of these operators on real world problems.
Since the definition of the convex functions has been given as an inequality, this concept has
established a powerful link between convexity and inequalities. It is now become a trending
aspect of mathematical research to generalize classical known results via fractional integral
operator. Although fractional analysis is basically a generalization of classical analysis, it has
developed rapidly with the concepts of fractional order operators. Fractional analysis has
recently become a popular topic with its applications in many fields such as modeling, physics,
approximation theory, engineering, control theory and mathematical biology, based on
applied mathematics problems (see[1—3,5-0,11-13,15,16,20-22 24,26-28,31,32,34,35,37,38].
Recently in [17], the author introduced a new concept to unify Riemann-Liouville and
Hadamard fractional integral operators which a certain general form for fractional integral
operators. Also the conditions are given so that the operator is bounded in an extended
Lebesgue measurable space. The corresponding fractional derivative approach to this new
generalized operator can be seen in [18]. Moreover, Katugampola worked for the Mellin
transforms of the fractional integrals and derivatives (see [19]).

Definition 1.4. [17] Let [k, 7] C R be a finite interval. Then, the left-sided and right-sided
Katugampola fractional integrals of order £ > 0 of f € XY (x",7") are defined as follows:

v v F)
( I/§+f)($) = F(g)L (:c—)\)l—f)\ L\, = >k

and

vré _ AR ) v—
(I f)(x) = F(g)/x oo e ld\, z <,

with kK < x < 7 and v > 0, if the integrals exist.
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Theorem 1.1. [17] If £ > 0 and v > 0, then for x > k
1) lim ("I, f)(2) = (JE ) (@)

2) lim (I )@) = (HE @)

The main motivation point of the study is to prove the HH type inequalities with specific
and general forms for the functions whose absolute values of derivatives are m—convex and
exponentially convex functions with the help of the fractional integral operator, which has
a general kernel structure. The main results are reduced to the results available in the
literature in some special cases, as well as giving new approximations and estimates for
differentiable and m—convex and exponentially convex functions. To obtain our results, we
used some known proof methods alongside classical inequalities such as the Hélder inequality,
Power mean inequality and Young inequality.

2. Hermite-Hadamard Type inequalities for Katugampola-Fractional Integrals

We will start with the following identity that will be useful to prove our main findings
via Katugampola fractional integral operator (see [23]):

Lemma 2.1. Let £ € (0,1) andv > 0 and f : [k, 7] — R be a twice differentiable mapping
on (KY,7") with 0 < k¥ < 7. Then, the following equality holds for Katugampola fractional
integral operator:

267 (¢ + 1)s Tt

TV_K/V

S
X [( ) ) fr (Iffc";f")i) f(KV)] _f<ﬁvj2wu)

(¥ — kY 2—tY
— tu§+1/ 1 ( KV I/) dt
4 o ! Ty T

/ 2t
+/ tV§+V_1f <2T”+ 5 IQV) dt].
0

Theorem 2.1. Suppose that f : [k”,7V] — R be a differentiable function on (K”,7") with 0 <
k < T. If |f'| is m—convex function, then we have the following inequality for Katugampola

fractional integral operator:
2710+ 1)t | [, y K+ 17
IE l/)§ Ig&”+7” % f (T ) V+T < 2 >
(T = KY) (T)+
K'/ v
" ’ )

e e O

4 (2v€ + 4v Vf +v
form € (0,1].

)
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Proof. By using right hand side of the Lemma (2.1), we can write
(¥ — KY) [/1 ny (t” 2 — v )
Al < tVE-‘rI/ v v v
Al < 1 ; f 5 + 5T
1 r [t 2 —tv
+/ tu§+y—1 f (TV + K/l/) dt:| )
0

2 2
By making use of the necessary calculations, we get
Y —gY / m (V€ + 3v TV r KV
T e (G D)+
m m

< N T 14
- 4(21/5—1—41/)(“)0(’{)_'_ v+ v
Which completes the proof.

Theorem 2.2. Suppose that f : [k¥,7"] = R be a differentiable function on (k”,7") with
0 <k < 7. If|f|7 is m—convex function, then we have the following inequality for

) fo»f)] - (“"2”)‘

dt

|A]

Katugampola fractional integral operator:

2I(E+ D e ) v <y :
NGO
(7—1/ _ K;I/)é [( (K,U;TV)E ( ) (K,U;TU)

< (T”—ﬁ”)< 1 )i( 1 )3
- 4 vEp+vp—p+1 2v 42
1
/ f VN |9\ ¢
x mf (ﬁ”)q+m(2u+1)‘f (;) )q+<
forp>1,me (0,1 andp~ ' +q 1 =1
Proof. From the right hand side of Lemma (2.1), we have
4]
(Ty_ﬁy) |:/1 vé+v—1 | ¢ (ty v 2-1 1/)’
< 5|/t = dt
- 4 0 f T T
! o[t 2—t¥
[l (G 2 ]
0

2 2
By using the Holder inequality, we get

1
(1¥ — k") (/1 _>p( Lt 2 —t"
A< — 7 véptvp—p / v v
|A| < 1 Ot ; f gt T

1
(¥ — KY) (/1 Ve >p< 1 /<tV 2 —tv >
t p+vp—p / - v
—1-74 ; A f 27’ + 5 K

Thus, we provide

| =

’

f ()

qﬂ

q+m(2y+1)’f’ (';:)

1
(TV—HV)< 1 )p ( 1 roo e m(2v 4+ 1) /<T”>q q
< B S —
4] = 4 vép+vp—p+1 . 2V—|—2f(,{,) 2v+2 / m
1
(7’”—/1”)( 1 >p< 1 rooae . m(2v+1) ,</£V)q 4
+ 4 vEp+ruvp—p+1 2v+2 £ ) 2v+2 / m

This completes the proof.
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Theorem 2.3. If f : [k¥, 7] — R be differentiable function on (K", 7") with k¥ < 7 and
e Ly[x”, 7). If |f'|? is a m—convex function, then we have the following inequality for
Katugampola fractional integral operator:

A

< (7_117/{1/) 1 1_% 1 %
- 4 <V§+1) (2u§+4y>

X[( ¢ m v+ 3v) an)

+
v +v)
where ¢ > 1 and m € (0,1].

’

f (&)

’

£ |y e )

(vE+v)

q>;+(

/(=)

Proof. From Lemma 2.1, we have

27N+ T, ) v <VI§ ) HV] /<c”+T”|
(77 = )’ [( gyt ) 100 (T ) 1000 =1 (557)

(¥ — K¥) /1 R N e /1 L, 2t
< trétv v v dt tu{-{—u 1 v v dt| .
< 1 | f 5 + 7 7 + ; f 5T + 5 K

By applying Power-mean inequality, we get
1
q q
dt)

N
dt) .

1

v v 1 -1 1
|A| < (T — K ) (/ tu§+u—1> ! (/ tuE—&-u—l
4 0 0
1-1 1
(7_11 B EV) /1 vé+rv—1 ¢ / vé+r—1 4 t” v 2t v
+ 1 | ; f 5T + 5 K

By using m—convexity of |f’|? and making some simple computations, we get

4] < Wﬁ”)( 1 >13( 1 )3
4 vé+1 2v€ + 4v

(e =gzl ) @]

_l’_
(V€ +v)
Which completes the proof. O

[t 2 —t¥
7 (zv i)

’

f(,‘iu) a m(yf—i—Sy)

€ +v)

Theorem 2.4. Suppose that [ : [¥,7"] — R be a differentiable function on (k¥,7") with
0 <k < 7. If|f'|7 is m—convex function, then we have the following inequality for
Katugampola fractional integral operator:

2§_IF(§ + 1)V§_1 Vfg . Vfg N KY 4TV
(v — k)E K (M)i) A )+( (Rt ) S (=) f( 2 )

2 + 2

| <=

- (¥ — KY) { 2
- 4 vép? + vp* = p® +p
fe +mev+ ) ([f @)+ ()] + 7 e[
+ 2vq + 2q

forp,q>1 and m € (0,1].
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Proof. From the right hand side of Lemma (2.1), we have
25717 (€ + 1)ve! "
V(‘E V)g v oo d f) + v v L f () —f< : )
R N C S (25
V=R Tt [t 2 —t¥
< (7-4/{) |:-/ tV§+l/71 f (,{U+ 3 TV)’dt
0

2 2
n / ! pEtr—1
0

e 2 -t
£ (G|

By using the Young inequality, we get

/ v v q
N 1 [ ¢Wé+v=1)p f LK,V—F TV
’ASW/( . +‘ (2 qz )dt
0

/ v 12 q
v_ oy gl [ wet=tp | f (DY 4 Y
P LG w0 |
0 P q

4

Thus, we can conclude

2671]:‘(5 + 1)V£71 VI£ 7-1’ 1/]5 ) I{V ] _ /<LV + 7'1/
(7w {((Wywi)f( **<<qu§ 1o =1 (57)

(¥ — KY) 2
<
4 vép? +vp* —p* +p
/ q ’ v |4 ’ v |4 ’ q
e +m v+ 1) (|F (2)] +[F (2)]) +]7 )
2vq + 2q ’
This completes the proof. ]

Theorem 2.5. Suppose that f : [k¥, 7] — R be a differentiable function on (k",7T") with
0< k<. If|f'| is exponentially convex function, then one has the following result for

Katugampola fractional integral operator:

2671F(£ + 1)V571 Vjé v Vfg KY o K + 1Y
(7 — )t [( w%”>)jw >%((qu§ 1| = (757

(¥ — k") f/ (k") f/ (")
4 (7/5 + I/) eOkY + arV?
for a € R.

we have

1), w
( kY + _tVT”th
f (ZT”—FQ 5 ”) dt].

Proof. By using the integral identity in Lemma (2.

’A’ < (T ;H)[ tl/&-ﬁ-ul

+/ tu§+y 1
0
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From the definition of exponentially convex functions, we obtain

Al < (T’/Z{V)[/Olt”“v—l [ty‘fl(ﬂy)‘ 2-t f/(TV)‘]dt

2 604/{” 2 eaT”

1 v |f ()] o | ()
+/ t”5+”1[t‘ y’+2 ! — | dt| .
0 2 eoT 2 eor

By making the necessary calculations, we get

N " v
’A‘ (TV — ﬁy) ‘f (/{ ) /1 tu{-i—u—lidt + ‘f (T ) /1 tu§+u—12 — tydt

- 4 ek 0 2 et 0 2

" v YR

—I—‘f (™) /1t1/§+1/—1ty+ 'f (x )’/1tu§+u—12_tl/dt
eat” 0 2 ear” 0 2
vy [|F ()] Gl

_ (7— Y ) ‘ . / ty§+y—1dt + ’ - / tV§+V_1dt

4 eOéKi 0 eaT 0
_ e [le] e
- 4 (l/f 4 I/) EQRY atV :

Which completes the proof. ([l

Theorem 2.6. Suppose that f : [k”, 7] — R be a differentiable function on (k", ") with
0 <k <7. If |f'|? is exponentially convexr function, then one can obtain the following
inequality for Katugampola fractional integral operator:

27IE DA [ e oy (v |
(7 = K Mf")i) a H( eyt ) 100 =1 (57

- (TV—KVV)< 1 )é
- 4 vEp+uvp—p+1

GO CTES VTG Fef =l )

q q q q
(2ecm”(u+1)+ 207 (0 + 1) ) +(2e‘””(v+1)+ 260 (v + 1) )

forp>1,aeRandp t+q 1 =1.

1

Proof. From the right hand side of Lemma (2.1), we have

v _ UV 1 , v _ 4V
’A’ < (T ; K ) [/ tVE-H/—l f <t2ﬁl/ + 2 2t Ty)‘dt
0

1 r (Y 2 —t¥
+/ gretv=tiy (T”—i— HV> dt].
0 2 2
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By using the Holder inequality, we can write

(TV—HV) (/1 _)P( Ly, /v 2 —t¥
Al < vép+uvp—p / v v
| ]_74 Ot ; f 5 1 + 5 T
1
(7" — k) (/1 V£p+upp>p (/1 ! (ty v, 2=t u)
+ 1 A t A f 27’ + 2 K

Thus, by using the definition of exponentially convexity, we provide
(" — K¥) ( 1 )i
- 4 vEp+uvp—p+1

1
q q
dt)

1
q q
dt)

4]

/

1
q ’ q q
Fe) pw  FE) o
x [ = / —dt + ; / dt
ear 0 2 eatT 0 2
G ( 1 )é
4 vép+uvp—p+1
1
’ q ’ q q
Faf pe FE) e \°
) [ [ —dt+ - / dt| .
eaT 0 2 ear 0 2

After necessary computations, we have

’

q ’ q
(7’” — /{V) 1 P f (’il/) (21} - 1) / (TV) !
4] = 4 <1/§p+up—p—|— 1) (260“’"" (v+1) + 2e27" (v +1)
(" = ) | s lre el ey
4 vép+uvp—p+1 2e2™ (v +1) 2e” (v 4 1) '
== )
This completes the proof. ]

Theorem 2.7. Suppose that f : [k¥, 7] — R be a differentiable function on (k", ") with
0 <k <rT. If|f'|7 is exponentially convex function, then we have the following inequality
for Katugampola fractional integral operator:

26_1F(£+ 1)V§_1 z/If TV l’Ig Y| — kY + 1Y
(77— [( W@”ﬁ)f( *%(<Wywi 1) = ()

+

!’

q
2 vl f (")
vép? +vp? —p*+p  qe® (v+1)  ge* (v+1)

< v(tV —KY)
- 4

forp,qg>1 and o € R.

Proof. From Lemma (2.1), we can write
: (Y 2 —t¥
f (KZV + T”) ‘ dt

’A’ < (TV — I@’V) [/1 tl/&-ﬁ-u—l
4 0 2 2

1 r (Y 2 —t¥
vé+r—1 v v v
—i—/ot f<27' + 5 H)

.
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By using the well-known Young inequality, we have

/ 4 v q
v_ oy gl [ wete=tp | f (DR EEY
‘A,SM/ J (5 2 )!dt
4 0 p

+ dt

(7—’/_,4’)/1 tWE+v=1)p N ‘f’ (%TV n %“Vﬂq
4 0 » p

Therefore, by taking into account exponentially convexity of |f/|7, we obtain

q q

!

V(7 — k¥ 2 o|f () (5
- 4 vEp? +uvp? —p>+p  qe (v41)  ge (v+1)

v

This completes the proof. O

3. CONCLUSION

In the literature, there are many studies of different researchers that include Katugampola
integral operators for functions whose absolute values of first derivatives are convex. The
main motivation point of the study is to obtain the inequalities with the help of Katugampola
integral operators for the functions whose absolute value of the derivatives are m—convex
and exponentially convex functions. In this sense, the findings contribute to the improvement
in convex analysis and take the discussion one step further. In addition, Hélder’s inequality
is used to prove the main results and new approaches are obtained. Several special cases of
our main findings can be found by selecting different values of m, a, v and &.

Recently, researchers working in the field of inequalities frequently use fractional inte-
gral operators and thus obtain new generalizations associated with the certain types of
inequalities. Katugampola integral operators structurally combine Riemann-Liouville and
Hadamard fractional integral operators and contribute to the effectiveness of the results
with its generalized kernel structure. The results can be performed for different kinds of
convexity and operators. These results can be applied in convex analysis, optimization and
different areas of pure and applied sciences. The authors hope that these results will serve
as a motivation for future work in this fascinating area.
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