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GENERALIZED HERMITE-HADAMARD INTEGRAL INEQUALITIES
ON INTERVALS

MEHMET ZEKI SARIKAYA*!

ABSTRACT. The aim of this study is to derive numerous new generalized inequalities of
trapezoid and midpoint types by dividing the closed interval [a, b] into n equal subintervals
and utilizing convex functions in conjunction with the Hermite-Hadamard inequality.

1. INTRODUCTION

The concept of convex functions plays a fundamental role in various branches of mathe-
matics, particularly in optimization theory, functional analysis, and approximation theory.
A function f : [a,b] — R is called convex if, for all z,y € [a,b] and t € [0, 1], the following
inequality holds:

fltz+ (1 —t)y) <tf(z)+ (1 -1)f(y)
Convex functions exhibit several intriguing properties, among which the Hermite-Hadamard
inequality is a notable result. This inequality provides a connection between the value of a
convex function at the midpoint of an interval and the average value of the function over
that interval. The inequalities discovered by Hermite and Hadamard for convex functions
state that if f: I CR — R is a convex mapping defined on the interval I of real numbers
and a,b € I with a < b, then

a+b 1 b f(a)+ f(b)
< de < —————=. 1.1
1(557) <0 [ F@ar< KOG (1)
Both inequalities hold in the reversed direction if f is concave [0]. In recent years, significant

progress has been made in the generalization and extension of the Hermite-Hadamard
inequality. For further details and comprehensive discussions on these developments, readers
may consult [1-19], along with the references cited within those works. These studies explore
a variety of approaches to broadening the scope of the inequality.
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The Hermite-Hadamard inequality has been extensively studied in the literature for
its numerous applications, particularly its ability to connect the midpoint and trapezoid
formulas within a single inequality. In this study, a new inequality is established that
integrates the composite trapezoid and composite midpoint formulas, extending the classical
Hermite-Hadamard inequality as a specific case of the presented result.

2. GENERALIZED HERMITE-HADAMARD INEQUALITIES

Throughout this study, let a,b € I with a < b. The closed interval [a,b] is partitioned
into n equal subintervals. The set of nodes {z;}}", defining these subintervals is given by

b_
a:i—a+i( a), i=0,1,2,....n
n

Here, h = b—;"‘ denotes the length of each subinterval. By using convex function, generalized
Hermite-Hadamard’s inequalities can be represented in the following forms. The generaliza-
tion of Hermite-Hadamard inequality is given in the succeeding theorem (see [2], Theorem
3, p-3). Let us give this theorem again here with a different proof.

Theorem 2.1. Let f : I CR — R be convex function on I, where a,b € I with a < b. Then
the following inequalities hold:

1 & T; + X1 1 b 1M
”;f( 2 >§b—a/af(x)d 7; (@) + f(@i-1)] (2.1)

forn € N.

Proof. Let x; = a + ib_T“, i =0,1,2,...,n dividing the closed interval [a,b] into n equal

subintervals, each denoted by [z;_1,z;]. Since the function f is convex on each [z;_1,z;] C

[a, b] , applying the Hermite-Hadamard inequality on [z;_1, ;] yields the following result:
f<$z'+xi—1) R b v < f(%)%—f(wi—l).

2 “b—-a miilf(x)d - 2

Thus, taking the sum over i from 1 to n, we get

ig;f(xi—i_;i_l) Z/xll 2127; (i) + f(xiz1)]

which is completed the inequalities of (2.1). O

Remark 2.1. Under the assumptions of Theorem 2.1
with n = 1, the inequalities (2.1) reduces to (1.1),
with n = 2, the inequalities (2.1) reduces to

;[f(?’“jb) +f(“+43b)] < bia/abf(:wdxsi[f(a)+2f<a§b>+f(b>}

which is proved by Tseng et. al in [9],
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with n = 3, the inequalities (2.1) reduces to
1 5a +b a+b a+ 5b
U (C57) () o (557)]
1 b
< b_a/af(x)dx

e () 2 (52) 0]

Let us present the following two lemmas for the generalized trapezoid and midpoint

inequalities:

Lemma 2.1. Let f : I C R — R be a differentiable function on I such that f' € Lia,b]
where a,b € I, a <b. Then the following equality holds:

1 & 1 b i +:c, 1
o DU @+ el = [ e = [ () @
(2.2)
forn € N.

Proof. Using by partial integration method, we have

/9:"1 <m T +2$i—1> F@)de = (:v T +296z'—1) f ()

= eyt f ) - [ f@)de

2n Ti-1

Dividing both sides by b — a and taking the sum over ¢ from 1 to n, the following result is

obtained:
1 n Zi T, +Ti—1 1 & 1 /b
- T a o 7 11— d
bz/( ) @) de = S+ il = [ @
which is completed the inequalities of (2.2). O

Remark 2.2. In Lemma 2.1,
taking n = 1, the equality (2.2) becomes

f(a);f(b)_bia/abf(x)dm: ! Lb($_a;b>f/($)d$’

which is proved by Dragomir and Agarwal in [5].
Taking n = 2, the equality (2.2) reduces to

Hr@ear () 0] - [ rwa

- biaﬁ(ﬂc—?’“ﬁ)ﬂ>dw+b_a/;($-“23b>f’<ﬁ>d$

which is proved by Sarikaya in [10].
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Corollary 2.1. Under the assumptions of Lemma 2.1, if we take n = 3, the equality (2.2)

reduces to
@ () e () s - [ @a

_ Ls(x—5a+b>fl(x)dx+bl /3 (m—a;rb>f/($)dx

b—a 2 —a J2atb
3

1 b a+5b\
—i—b_a/ag%(a:— G )f(x)da:.

Lemma 2.2. Let f : I C R — R be a differentiable function on I such that f' € Lia,b]
where a,b € I, a <b. Then the following equality holds:

1 & T, + ;-1 1 b
n;f( 5 >_b—a/af($)d$ (2.3)
n Tit®i_1
= blagjl/xzf (x—zi1) f (z dx+72/+xll (z —x;) f' (z) dx

forn e N.

Proof. Using by partial integration method, we have

zitei—q

2 Zi

(x —x;) f' (2) dx

TitTi—q
2

(x —2i1) f' (x)do +
Ti—1
itz

= —m) f@L T - / TS @ et =) @, [on,, @)

_ b;af<xz+acz 1) / flz 2 2

Dividing both sides by b — a and taking the sum over ¢ from 1 to n, the following result is

obtained:
1 n zit®i—1 1 n -
2 1
—> (o= ai) f @) dot o3 [ =) £ (@) da
T4 g b—aim Jrget
1 T+ Ti_1 1 b
= — - d
nz_;f( S ) - [ f @
which is completed the inequalities of (2.3). O
Remark 2.3. In Lemma 2.2,
taking n = 1, the equality (2.3) becomes
a+b
- d
() - [ @
1 () d 1P 0 (a)d
et R I C Ly DR

which is proved by Kirmaci in [3].
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Taking n = 2, the equality (2.3) reduces to

;[f(3a2—b>+f<a—236>} B ia/abf(x)dx

3a+b a+3b

1 /4 , 1 a+b\ .,
_ (:v—a)f(x)da:+/ (:c— )f(a:)dw
b—a Jg atb 2
1 % a+b\ 1 b )
+b—a Sajb(az— 5 )f($)dx—i—b_a/a+4%(x—b)f(:c)da:
1 Bat e a+b
= b—a/a (x—a)f’(m)dw—i—b_a . (l‘— 5 )f’(x)dx
1 b ,
b [, @D f (@)da
4
for n € N, n > 3, there is the following relationship
a:aJr(nfl)aSb+(n71)a:a+(n71)b+n72(a_b)§a+(n71)b
n n n n n

<b.

Corollary 2.2. Under the assumptions of Lemma 2.2 if we take n = 3, the equality (2.3)

reduces to

U)o (57 +o (55 - [

5a-+b a+b
1

— b_a/a ‘ (x—a)f’(x)dx—i—bia/m; (m—za;b>f/(x)d:c

2a+b

a+5b

1 6 a-+2b , 1 3 2a + b ,
+b—a/a+32b <x 3 >f (I)d$+b—a/5aﬁ_+b <m 3 >f (z)dz

1 a+2b\ 1 b /
+b_a/a;b (a- 2 )f(x)dx+b_a[l+65b(x_b)f(x)dx

Y : 1 2+ b\
i, (i_a)f(x)d“ba/wgb <x_ 3 )f(x)dx

1 o5 a+2b 1 b )
+b—a/a2+b (‘”f‘ 3 )fUd +,)_/z+65b<x—b>f<x>dm.

Now, we give the new following results for generalized Trapezoid type inequality:

Theorem 2.2. Let f : I C R — R be a differentiable function on I such that f' € Li[a,b]

where a,b € I, a <b. If |f'| is convex on [a,b], then the following inequality

N=IALL

n

1

xz +fle

[\~
3
i

=1

(2.4)
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Proof. From Lemma 2.1 and using convexity of |f'|, then we have

1 1 b
— T; Ti—1)] — x)dx
(F o)+ S i) = [ @)

2n
Z
1 & :c+x 1
B[ e
i=1"%i-1
< zn:/ xz+xl 1 [ Li— T If (2: 1)’+m“ﬂ(x.)| da
a = Ti— Ti—1 ‘ Ti— Ti—1 ‘
1 n ’fl Ti—1 ‘ Jf'z‘i‘xz 1
b—ag T; — Ti_ 1/ (i — @) dz
1 |f' ()] T+ T
- v - — i d
b—ale—mzl . 2 (= @ia)do

If the last two integrals above are computed as follows and substituted into their places, the
desired result is obtained.

/ g Tt Tzl (z; — z) do
Ti—1 2
L it i T+
> : - : 4 .
= <M—:p>( —x)dr + <x—27’1>(xi—a:)dx
s 2 siteiog 2
2
_ (mi—wi)’
8
and
/ x_m (& — zi_1) dz
T 2
WL e +x T T+ @
. . - : 4 -
— / (’ QZ —gc)(:z:—xZ Vde+ [, <x—z 21 >(x—ﬂfi—1)d$
Ti_1 2
G ;1)°
8
which is completed the proof. O

Remark 2.4. In Theorem 2.2, taking n = 1, the inequality (2.4) reduces to

L0 1 e

b—a) (!f’ (a)] -QF |/’ (b)|>

which is proved by Dragomir and Agarwal in [5].

Corollary 2.3. Under the assumptions of Theorem 2.2,
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for n. =2, the inequality (2.4) reduces to

@2 (52) 4 rw) - _a/f
(5°)]+ 17 o]

=27 @]+ 15 o),

IN
—
(=
I
Q
~—
P

/ a)|+2 f/

<

for n. =3, the inequality (2.4) reduces to

s () s (252 0] - o
(b <2a;—b)‘+2 /<a§2b>’+‘f/(b)‘]'

— a) ! /
< 2
< B2 17 @l 2
Now, we give the new following results for generalized Midpoint type inequality:

Theorem 2.3. Let f : I C R — R be a differentiable function on I such that f' € Li[a,b]
where a,b € I, a <b. If |f'| is convexr on [a,b], then the following inequality

1 & Ti + Ti
() - [ (25)
n = —a
b 2 " Ti+ Ti—1
< B2 s [l )r (S5 417 |
i=1
forn € N.
Proof. From Lemma 2.2 and using convexity of |f’|, then we have
1& T; + Ti—1 1 b
ngf( ) - [ @
n Ttz 1 n T
2 i
< 3 [T emw) @l Y [ w0 | @) de
aim /i b—aiZ/Hg=t
1 n 9 TitTi_q
2
< o
- b—aZx,—xi_l Ti1 (@ — i)

() () i el e

1 n 2 T
+b —a ZZ /zﬁzi_l (zi — )
()| e

— Li — Ti—1

x[(a:—w)b” )|+ (zi — z)
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The integrals above can be readily computed as outlined below:

zitTi—q

7 (H;U—l> / T e —my)de
Ti—1
TitTi—1 4
3 Ti + X
+|f’(:r:i,1)|/ (r —xi—1) <Z211—:1:> dx
Ti—1
3 3
T; + Ti— T — Tj_ €XT; — Tij_
_ f/< ) 21 1) ( [ 242 1) +( 7 481 1) |f/($i71)’
and
xT; Ti 4+ i T+ 2 x;
‘f/ (xz)| w21 (xz — .1‘) (x — ’2“> dx + f/ <1211> ‘ /zﬁzi,l ($z o x)Q dx
-z -z
(- zio1)® (2 — 2-1)° | <SU1 + l‘il)
which is completed the proof. ]

Remark 2.5. In Theorem 2.3,
for n = 1, the inequality (2.5) reduces to

‘f (a;b> - bia/abf(”f)dm
(b—a)’ (!f’ @[+ 1/ (b)\)

- 4 2

<

(b—a)*
24

17 @l +2|r (S50 + 170

which is proved by Kirmaci in [3].

Corollary 2.4. Under the assumptions of Theorem 2.3,
form =2, the inequality (2.5) reduces to

;[f<3a4+b>+f<az3bﬂ —bia/abf(x)dx

< “’g;)z I @le2|r (50) | 2|r (B2 +olr (S50 [+ 17 o]
O ol (B ol (52 ]

for n = 3, the inequality (2.5) reduces to
U)o () e (5 e [
(b—a)? f,<2a;—b>‘+2f,(5ag—b>‘

< Sl @l
P ()l (557 o)

r(252)]

IS

+
ot
S

+ 2
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