
***Turkish Journal of
INEQUALITIES***

Available online at www.tjinequality.com

**NEW PROOF OF HERMITE-HADAMARD-MERCER TYPE
INEQUALITY VIA GREEN FUNCTION IDENTITY**

JAMROZ KHAN¹

ABSTRACT. The distinguished Hermite-Hadamard inequality has captivated the attention of several researchers due to its applications and rich geometrical significance. In this paper, we provide a simpler and stronger proof of Hermite-Hadamard-Mercer type inequality given by Öğülmüs and Sarikaya in [20] as

$$\begin{aligned}\Psi\left(i_1 + i_2 - \frac{\mu_1 + \mu_2}{2}\right) &\leq \Psi(i_1) + \Psi(i_2) - \frac{\Gamma(\alpha + 1)}{2(\mu_2 - \mu_1)^\alpha} \left[J_{\mu_1^+}^\alpha \Psi(\mu_2) + J_{\mu_2^-}^\alpha \Psi(\mu_1) \right] \\ &\leq \Psi(i_1) + \Psi(i_2) - \Psi\left(\frac{\mu_1 + \mu_2}{2}\right),\end{aligned}$$

where $\Psi : [i_1, i_2] \rightarrow \mathbb{R}$ is convex function, $\mu_1, \mu_2 \in [i_1, i_2]$ and $\alpha > 0$. To obtain the proposed result we utilize Green function identity and consider $\alpha \geq 1$. We hope that the results in this study will invigorate further research on the topic.

1. INTRODUCTION

The concept of convex convexity was presented over hundreded years ago is one of the most useful and applicable area of mathematics. It has various applications in both pure and applied mathematics, economics, physics, statistics, information theory, etc. The convex functions play a central role in mathematical analysis, providing a base in various areas such as optimization, probability theory, and applied mathematics. The mathematical inequalities is a versatile field as it has wide applications in other branches like economics, physics, statistics, nonlinear programming, industry, engineering, optimization theory etc. The class of convex functions and mathematical inequalities are closely related to each other. Many important inequalities such as Hermite-Hadamard's (H-H) inequality, majorization inequality, Ostrowski inequality, Jensen's inequality, Fejer inequality and Hardy-type inequality etc. have been established for convex functions [3, 10, 13, 22].

Key words and phrases. Jensen-Mercer Inequality, Hermite-Hadamard Inequality, Riemann-Liouville fractional integrals, Green functions.

2010 *Mathematics Subject Classification.* Primary: 26A51. Secondary: 26D15, 26A33.

Received: 30/05/2025 *Accepted:* 01/09/2025.

Cite this article as: J. Khan, New Proof of Hermite-Hadamard-Mercer type inequality via Green function identity, Turkish Journal of Inequalities, 9(2) (2025), 39-46.

A function $\Psi : [i_1, i_2] \rightarrow \mathbb{R}$ satisfy

$$\Psi(\lambda\mu_1 + (1 - \lambda)\mu_2) \leq \lambda\Psi(\mu_1) + (1 - \lambda)\Psi(\mu_2)$$

is said to be convex, for all $\mu_1, \mu_2 \in [i_1, i_2]$ and $\lambda \in [0, 1]$. This classical definition of a convex function has been modified in several ways to obtain new kinds of convexities such as strongly convexity [1], h-convex [26], m -convex functions [19, 24], s-convex [9], 4-convex functions [27], P-convex [23] and coordinate convex [11] etc.

One of the most important integral inequality for convex functions in the literature of applied mathematical inequalities is the H-H inequality. This inequality was first discovered by Hermite in 1883 and J. Hadamard rediscover it independently in 1893 [2, 17, 18].

Let $\Psi : [i_1, i_2] \rightarrow \mathbb{R}$ be a convex function, then the inequality

$$\Psi\left(\frac{i_1 + i_2}{2}\right) \leq \frac{1}{i_2 - i_1} \int_{i_1}^{i_2} \Psi(\lambda) d\lambda \leq \frac{\Psi(i_1) + \Psi(i_2)}{2}$$

is said to be H-H inequality. The H-H inequality is elegant and simple and a lot of literature have been devoted to it providing new proofs, generalizations, extensions, refinements and applications. For more results associated to H-H inequality see [4, 5, 8].

Jensen's inequality is one of the most studied result in literature. Mercer introduced a modification of Jensen's inequality called Jensen-Mercer inequality [14, 15].

Let $\Psi : [i_1, i_2] \rightarrow \mathbb{R}$ be a convex function, $u, v \in [i_1, i_2]$, then the inequality

$$\Psi\left(i_1 + i_2 - \frac{u + v}{2}\right) \leq \Psi(i_1) + \Psi(i_2) - \frac{\Psi(u) + \Psi(v)}{2}$$

is said to be Jensen-Mercer inequality.

In [16], Kian and Moslehian combine the H-H and Jensen-Mercer inequalities.

$$\begin{aligned} \Psi\left(i_1 + i_2 - \frac{u + v}{2}\right) &\leq \Psi(i_1) + \Psi(i_2) - \frac{1}{v - u} \int_u^v \Psi(\lambda) d\lambda \\ &\leq \Psi(i_1) + \Psi(i_2) - \Psi\left(\frac{u + v}{2}\right), \\ \Psi\left(i_1 + i_2 - \frac{u + v}{2}\right) &\leq \frac{1}{v - u} \int_u^v \Psi(i_1 + i_2 - \lambda) d\lambda \\ &\leq \frac{\Psi(i_1 + i_2 - u) + \Psi(i_1 + i_2 - v)}{2} \\ &\leq \Psi(i_1) + \Psi(i_2) - \left(\frac{\Psi(i_1) + \Psi(i_2)}{2}\right). \end{aligned}$$

The fractional integral is an important part of fractional calculus. There are various types of fractional integral operators see [6, 7]. The Riemann-Liouville (RL) fractional integral operators for a function Ψ defined on $[i_1, i_2]$ are:

$$J_{i_1^+}^a \Psi(\mu) = \frac{1}{\Gamma(a)} \int_{i_1}^{\lambda} (\mu - \lambda)^{a-1} \Psi(\lambda) d\lambda; \mu > i_1, \quad (1.1)$$

$$J_{i_2}^a \Psi(\mu) = \frac{1}{\Gamma(a)} \int_{\lambda}^{i_2} (\lambda - \mu)^{a-1} \Psi(\lambda) d\lambda; i_2 > \mu. \quad (1.2)$$

Here a is the order of Ψ and Γ represents the gamma function, given by

$$\Gamma(a) = \int_0^{\infty} u^{a-1} e^{-u} du.$$

The operator $J_{i_1}^a \Psi(u)$, is called left RL integral operator and $J_{i_2}^a \Psi(u)$ is called right RL fractional integral operator.

Sarikaya et. al. in [21], gave H-H type inequalities containing (1.1) and (1.2). This inequality open a new area for researcher.

Theorem 1.1. Suppose $\Psi : [i_1, i_2] \rightarrow \mathbb{R}$ is a positive convex function such that $\Psi \in L[i_1, i_2]$, then the fractional integrals inequality

$$\Psi\left(\frac{i_1 + i_2}{2}\right) \leq \frac{\Gamma(a+1)}{2(i_2 - i_1)^a} \left[J_{i_1}^a \Psi(i_2) + J_{i_2}^a \Psi(i_1) \right] \leq \frac{\Psi(i_1) + \Psi(i_2)}{2}$$

holds for all $a > 0$.

Tunc et. al. in [25], using Green function and gave the H-H type inequalities for the function whose absolute value of second order derivative is convex. The authors obtained the following result.

$$\begin{aligned} & \left| \frac{\Gamma(\alpha+1)}{2(\mu_2 - \mu_1)^{\alpha}} \left[J_{\mu_1}^{\alpha} \Psi(\mu_2) + J_{\mu_2}^{\alpha} \Psi(\mu_1) \right] - \frac{\Psi(i_1) + \Psi(i_2)}{2} \right| \\ & \leq \frac{(\mu_2 - \mu_1)^2}{(\alpha+1)(\alpha+2)} \left(\frac{|\Psi''(\mu_1)| + |\Psi''(\mu_2)|}{2} \right). \end{aligned}$$

In this article, we give H-H-Mercer type inequality, by using Green function defined as [12].

$$G(\mu_1, \mu_2) = \begin{cases} i_1 - \mu_1, & i_1 \leq \mu_1 \leq \mu_2; \\ i_1 - \mu_2, & \mu_2 \leq \mu_1 \leq i_2. \end{cases} \quad (1.3)$$

The following integral identity holds for G

$$\Psi(w) = \Psi(i_1) + (w - i_1)\Psi'(i_2) + \int_{i_1}^{i_2} G(w, \lambda)\Psi''(\lambda) d\lambda \quad (1.4)$$

here ψ is twice differentiable function.

2. MAIN RESULT

Lemma 2.1. Let $\Psi : [i_1, i_2] \rightarrow \mathbb{R}$ be a twice differentiable function and $\mu_1, \mu_2 \in [i_1, i_2]$ such that $\mu_1 < \mu_2$. Then

$$\begin{aligned} & \Psi(i_1) + \Psi(i_2) - \frac{\Gamma(\alpha+1)}{2(\mu_2 - \mu_1)^{\alpha}} \left(J_{\mu_1}^{\alpha} \Psi(\mu_2) + J_{\mu_2}^{\alpha} \Psi(\mu_1) \right) = \Psi(i_2) + \left(i_1 - \frac{\mu_1 + \mu_2}{2} \right) \Psi'(i_2) \\ & - \frac{\alpha}{2(\mu_2 - \mu_1)^{\alpha}} \int_{i_1}^{i_2} \int_{\mu_1}^{\mu_2} \left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) G(w, \lambda)\Psi''(\lambda) dw d\lambda. \end{aligned} \quad (2.1)$$

Proof. From RL fractional integral, we have

$$J_{\mu_1^+}^\alpha \Psi(\mu_2) = \frac{1}{\Gamma(\alpha)} \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} \Psi(w) dw.$$

Substituting the value of $\Psi(w)$ from (1.4), we obtain

$$\begin{aligned} J_{\mu_1^+}^\alpha \Psi(\mu_2) &= \frac{1}{\Gamma(\alpha)} \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} \left(\Psi(i_1) + (w - i_1) \Psi'(i_2) + \int_{i_1}^{i_2} G(w, \lambda) \Psi''(\lambda) d\lambda \right) dw, \\ \Rightarrow J_{\mu_1^+}^\alpha \Psi(\mu_2) &= \frac{1}{\Gamma(\alpha)} \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} \Psi(i_1) dw + \frac{1}{\Gamma(\alpha)} \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} (w - i_1) \Psi'(i_2) dw \\ &+ \frac{1}{\Gamma(\alpha)} \int_{i_1}^{i_2} \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} G(w, \lambda) \Psi''(\lambda) dw d\lambda, \\ \Rightarrow J_{\mu_1^+}^\alpha \Psi(\mu_2) &= \frac{1}{\Gamma(\alpha)} \Psi(i_1) I_1 + \frac{1}{\Gamma(\alpha)} \Psi'(i_2) I_2 + \frac{1}{\Gamma(\alpha)} \int_{i_1}^{i_2} \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} G(w, \lambda) \Psi''(\lambda) dw d\lambda, \end{aligned} \quad (2.2)$$

where

$$I_1 = \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} dw = \frac{(\mu_2 - \mu_1)^\alpha}{\alpha}, \quad (2.3)$$

and

$$\begin{aligned} I_2 &= \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} (w - \mu_2) dw \\ &= \frac{(\mu_2 - w)^\alpha}{-\alpha} (w - i_1) \Big|_{\mu_1}^{\mu_2} + \frac{1}{\alpha} \int_{\mu_1}^{\mu_2} (\mu_2 - w)^\alpha dw \\ &= \frac{(\mu_2 - \mu_1)^\alpha}{\alpha} \left(\mu_1 - i_1 + \frac{\mu_2 - \mu_1}{\alpha + 1} \right). \end{aligned} \quad (2.4)$$

Substituting (2.3) and (2.4) in (2.2), we obtain

$$\begin{aligned} J_{\mu_1^+}^\alpha \Psi(\mu_2) &= \frac{(\mu_2 - \mu_1)^\alpha}{\Gamma(\alpha + 1)} \Psi(i_1) + \frac{(\mu_2 - \mu_1)^\alpha}{\Gamma(\alpha + 1)} \left(\mu_1 - i_1 + \frac{\mu_2 - \mu_1}{\alpha + 1} \right) \Psi'(i_2) \\ &+ \frac{1}{\Gamma(\alpha)} \int_{i_1}^{i_2} \int_{\mu_1}^{\mu_2} (\mu_2 - w)^{\alpha-1} G(w, \lambda) \Psi''(\lambda) dw d\lambda. \end{aligned} \quad (2.5)$$

Similarly

$$\begin{aligned} J_{\mu_2^-}^\alpha \Psi(\mu_1) &= \frac{(\mu_2 - \mu_1)^\alpha}{\Gamma(\alpha + 1)} \Psi(i_1) + \frac{(\mu_2 - \mu_1)^\alpha}{\Gamma(\alpha + 1)} \left(\mu_2 - i_1 - \frac{\mu_2 - \mu_1}{\alpha + 1} \right) \Psi'(i_2) \\ &+ \frac{1}{\Gamma(\alpha)} \int_{i_1}^{i_2} \int_{\mu_1}^{\mu_2} (w - \mu_1)^{\alpha-1} G(w, \lambda) \Psi''(\lambda) dw d\lambda. \end{aligned} \quad (2.6)$$

Adding (2.5) and (2.6), we get

$$\begin{aligned} J_{\mu_1^-}^\alpha \Psi(\mu_2) + J_{\mu_2^-}^\alpha \Psi(\mu_1) &= \frac{2(\mu_2 - \mu_1)^\alpha}{\Gamma(\alpha + 1)} \Psi(i_1) + \frac{(\mu_2 - \mu_1)^\alpha}{\Gamma(\alpha + 1)} (\mu_1 + \mu_2 - 2i_1) \Psi'(i_2) \\ &+ \frac{1}{\Gamma(\alpha)} \int_{i_1}^{i_2} \int_{\mu_1}^{\mu_2} \left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) G(w, \lambda) \Psi''(\lambda) dw d\lambda. \end{aligned} \quad (2.7)$$

Multiply (2.7) with $-\frac{\Gamma(\alpha+1)}{2(\mu_2 - \mu_1)^\alpha}$ and adding $\Psi(i_2)$, we obtain (2.1). \square

Theorem 2.1. Suppose $\Psi : [i_1, i_2] \rightarrow \mathbb{R}$ is convex and twice differentiable function such that $\Psi(i_1) < \Psi(i_2)$ and $\Psi'(i_2) \leq 0$. Let $\mu_1, \mu_2 \in [i_1, i_2]$ such that $\mu_1 < \mu_2$. Then the inequalities

$$\begin{aligned} \Psi\left(i_1 + i_2 - \frac{\mu_1 + \mu_2}{2}\right) &\leq \Psi(i_1) + \Psi(i_2) - \frac{\Gamma(\alpha + 1)}{2(\mu_2 - \mu_1)^\alpha} \left[J_{\mu_1}^\alpha \Psi(\mu_2) + J_{\mu_2}^\alpha \Psi(\mu_1) \right] \\ &\leq \Psi(i_1) + \Psi(i_2) - \Psi\left(\frac{\mu_1 + \mu_2}{2}\right) \end{aligned} \quad (2.8)$$

hold, where $\alpha \geq 1$.

Proof. Putting $w = i_1 + i_2 - \frac{\mu_1 + \mu_2}{2}$ in (1.4), we obtain

$$\Psi(i_1 + i_2 - \frac{\mu_1 + \mu_2}{2}) = \Psi(i_1) + (i_2 - \frac{\mu_1 + \mu_2}{2})\Psi'(i_2) + \int_{i_1}^{i_2} G(i_1 + i_2 - \frac{\mu_1 + \mu_2}{2}, \lambda)\Psi''(\lambda)d\lambda. \quad (2.9)$$

Subtracting (2.1) from (2.9), we get

$$\begin{aligned} \Psi(i_1 + i_2 - \frac{\mu_1 + \mu_2}{2}) - \left(\Psi(i_1) + \Psi(i_2) - \frac{\Gamma(\alpha + 1)}{2(\mu_2 - \mu_1)^\alpha} \left(J_{\mu_1}^\alpha \Psi(\mu_2) + J_{\mu_2}^\alpha \Psi(\mu_1) \right) \right) \\ = \Psi(i_1) - \Psi(i_2) + (i_2 - i_1)\Psi'(i_2) + \int_{i_1}^{i_2} G(i_1 + i_2 - \frac{\mu_1 + \mu_2}{2}, \lambda)\Psi''(\lambda)d\lambda \\ + \frac{\alpha}{2(\mu_2 - \mu_1)^\alpha} \int_{i_1}^{i_2} \int_{\mu_1}^{\mu_2} \left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) G(w, \lambda)\Psi''(\lambda)dw d\lambda. \end{aligned} \quad (2.10)$$

Obviously, the first two terms in the right hand side of (2.10) are non-positive. Also $G \leq 0$ and Ψ is convex, therefore the third term is also non-positive. As $w \in [\mu_1, \mu_2]$, therefore

$$\left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) \geq 0.$$

Also $G \leq 0$ implies that the fourth term is also non-positive. From (2.10), we have

$$\Psi(i_1 + i_2 - \frac{\mu_1 + \mu_2}{2}) \leq \Psi(i_1) + \Psi(i_2) - \frac{\Gamma(\alpha + 1)}{2(\mu_2 - \mu_1)^\alpha} \left(J_{\mu_1}^\alpha \Psi(\mu_2) + J_{\mu_2}^\alpha \Psi(\mu_1) \right). \quad (2.11)$$

Now we prove the second part of (2.8). Substituting $w = \frac{\mu_1 + \mu_2}{2}$ in (1.4), we obtain

$$\Psi\left(\frac{\mu_1 + \mu_2}{2}\right) = \Psi(i_1) + \left(\frac{\mu_1 + \mu_2}{2} - i_1\right)\Psi'(i_2) + \int_{i_1}^{i_2} G\left(\frac{\mu_1 + \mu_2}{2}, \lambda\right)\Psi''(\lambda)d\lambda.$$

Multiply with -1 and adding $\Psi(i_2)$

$$\Psi(i_1) + \Psi(i_2) - \Psi\left(\frac{\mu_1 + \mu_2}{2}\right) = (i_1 - \frac{\mu_1 + \mu_2}{2})\Psi'(i_2) - \int_{i_1}^{i_2} G\left(\frac{\mu_1 + \mu_2}{2}, \lambda\right)\Psi''(\lambda)d\lambda. \quad (2.12)$$

Subtracting (2.12) from (2.1)

$$\begin{aligned} \Psi(i_1) + \Psi(i_2) - \frac{\Gamma(\alpha + 1)}{2(\mu_2 - \mu_1)^\alpha} \left(J_{\mu_1}^\alpha \Psi(\mu_2) + J_{\mu_2}^\alpha \Psi(\mu_1) \right) - \left(\Psi(i_1) + \Psi(i_2) - \Psi\left(\frac{\mu_1 + \mu_2}{2}\right) \right) \\ = \int_{i_1}^{i_2} \left(G\left(\frac{\mu_1 + \mu_2}{2}, \lambda\right) - \frac{\alpha}{2(\mu_2 - \mu_1)^\alpha} \int_{\mu_1}^{\mu_2} \left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) G(w, \lambda) \right) \Psi''(\lambda)dw d\lambda, \\ \Rightarrow \Psi(i_1) + \Psi(i_2) - \frac{\Gamma(\alpha + 1)}{2(\mu_2 - \mu_1)^\alpha} \left(J_{\mu_1}^\alpha \Psi(\mu_2) + J_{\mu_2}^\alpha \Psi(\mu_1) \right) - \left(\Psi(i_1) + \Psi(i_2) - \Psi\left(\frac{\mu_1 + \mu_2}{2}\right) \right) \\ = \int_{i_1}^{i_2} H(\lambda)\Psi''(\lambda)d\lambda, \end{aligned} \quad (2.13)$$

here

$$H(\lambda) = G\left(\frac{\mu_1 + \mu_2}{2}, \lambda\right) - \frac{\alpha}{2(\mu_2 - \mu_1)^\alpha} \int_{\mu_1}^{\mu_2} \left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) G(w, \lambda) dw. \quad (2.14)$$

Let

$$\begin{aligned} I(\lambda) &= \int_{\mu_1}^{\mu_2} \left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) G(w, \lambda) dw, \\ \Rightarrow I(\lambda) &= \int_{\mu_1}^{\lambda} \left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) (\mu_1 - w) dw \\ &\quad + \int_{\lambda}^{\mu_2} \left((\mu_2 - w)^{\alpha-1} + (w - \mu_1)^{\alpha-1} \right) (\mu_1 - \lambda) dw \\ \Rightarrow I(\lambda) &= \int_{\mu_1}^{\lambda} (\mu_2 - w)^{\alpha-1} (\mu_1 - w) dw + \int_{\mu_1}^{\lambda} (w - \mu_1)^{\alpha-1} (\mu_1 - w) dw \\ &\quad + \int_{\lambda}^{\mu_2} (\mu_2 - w)^{\alpha-1} (\mu_1 - \lambda) dw + \int_{\lambda}^{\mu_2} (w - \mu_1)^{\alpha-1} (\mu_1 - \lambda) dw. \end{aligned} \quad (2.15)$$

Now, since

$$\int_{\mu_1}^{\lambda} (\mu_2 - w)^{\alpha-1} (\mu_1 - w) dw = -\frac{(\mu_2 - \lambda)^\alpha (\mu_1 - \lambda)}{\alpha} + \frac{(\mu_2 - \lambda)^{\alpha+1}}{\alpha(\alpha+1)} - \frac{(\mu_2 - \mu_1)^{\alpha+1}}{\alpha(\alpha+1)}, \quad (2.16)$$

$$\int_{\mu_1}^{\lambda} (w - \mu_1)^{\alpha-1} (\mu_1 - w) dw = \frac{(\lambda - \mu_1)^\alpha (\mu_1 - \lambda)}{\alpha} + \frac{(\lambda - \mu_1)^{\alpha+1}}{\alpha(\alpha+1)}, \quad (2.17)$$

$$\int_{\lambda}^{\mu_2} (\mu_2 - w)^{\alpha-1} (\mu_1 - \lambda) dw = \frac{(\mu_1 - \lambda)(\mu_2 - \lambda)^\alpha}{\alpha}, \quad (2.18)$$

$$\int_{\lambda}^{\mu_2} (w - \mu_1)^{\alpha-1} (\mu_1 - \lambda) dw = \frac{(\mu_1 - \lambda)(\mu_2 - \mu_1)^\alpha}{\alpha} - \frac{(\mu_1 - \lambda)(\lambda - \mu_1)^\alpha}{\alpha}. \quad (2.19)$$

Substituting these values from (2.16), (2.17), (2.18) and (2.19) in (2.15), we obtain

$$I(\lambda) = \frac{(\mu_2 - \lambda)^{\alpha+1}}{\alpha(\alpha+1)} + \frac{(\lambda - \mu_1)^{\alpha+1}}{\alpha(\alpha+1)} + \frac{(\mu_1 - \lambda)(\mu_2 - \mu_1)^\alpha}{\alpha} - \frac{(\mu_2 - \mu_1)^{\alpha+1}}{\alpha(\alpha+1)}. \quad (2.20)$$

Putting this value from (2.20) in (2.14), we get

$$\begin{aligned} H(\lambda) &= G\left(\frac{\mu_1 + \mu_2}{2}, \lambda\right) - \frac{1}{2(\mu_2 - \mu_1)^\alpha} \left(\frac{(\mu_2 - \lambda)^{\alpha+1}}{(\alpha+1)} + \frac{(\lambda - \mu_1)^{\alpha+1}}{(\alpha+1)} \right) \\ &\quad - \frac{1}{2} \left(\mu_1 - \lambda - \frac{\mu_2 - \mu_1}{\alpha+1} \right). \end{aligned} \quad (2.21)$$

If $\mu_1 \leq \lambda \leq \frac{\mu_1 + \mu_2}{2}$, then from (2.21), we have

$$\begin{aligned} H(\lambda) &= \mu_1 - \lambda - \frac{1}{2(\mu_2 - \mu_1)^\alpha} \left(\frac{(\mu_2 - \lambda)^{\alpha+1}}{(\alpha+1)} + \frac{(\lambda - \mu_1)^{\alpha+1}}{(\alpha+1)} \right) \\ &\quad - \frac{1}{2} \left(\mu_1 - \lambda - \frac{\mu_2 - \mu_1}{\alpha+1} \right) \\ \Rightarrow H'(\lambda) &= -\frac{1}{2} - \frac{1}{2(\mu_2 - \mu_1)^\alpha} \left((\lambda - \mu_1)^\alpha - (\mu_2 - \lambda)^\alpha \right), \end{aligned}$$

$$H''(\lambda) = -\frac{\alpha}{2(\mu_2 - \mu_1)^\alpha} \left((\lambda - \mu_1)^{\alpha-1} + (\mu_2 - \lambda)^{\alpha-1} \right) \leq 0.$$

Since $H''(\lambda) \leq 0$, implies that $H'(\lambda)$ is decreasing and $H(\mu_1) = 0$, therefore $H(\lambda) \leq 0$.

If $\frac{\mu_1 + \mu_2}{2} \leq \lambda \leq \mu_2$, then $G(\frac{\mu_1 + \mu_2}{2}, \lambda) = \frac{\mu_1 - \mu_2}{2}$ and from (2.21), we obtain

$$\begin{aligned} H(\lambda) &= \frac{\mu_1 - \mu_2}{2} - \frac{1}{2(\mu_2 - \mu_1)^\alpha} \left(\frac{(\mu_2 - \lambda)^{\alpha+1}}{(\alpha+1)} + \frac{(\lambda - \mu_1)^{\alpha+1}}{(\alpha+1)} \right) \\ &\quad - \frac{1}{2} \left(\mu_1 - \lambda - \frac{\mu_2 - \mu_1}{\alpha+1} \right), \\ \Rightarrow H'(\lambda) &= \frac{1}{2} - \frac{1}{2(\mu_2 - \mu_1)^\alpha} \left((\lambda - \mu_1)^\alpha - (\mu_2 - \lambda)^\alpha \right), \\ \Rightarrow H''(\lambda) &= -\frac{\alpha}{2(\mu_2 - \mu_1)^\alpha} \left((\lambda - \mu_1)^{\alpha-1} + (\mu_2 - \lambda)^{\alpha-1} \right) \leq 0. \end{aligned}$$

Since $H''(\lambda) \leq 0$ implies that $H'(\lambda)$ is decreasing and

$$H\left(\frac{\mu_1 + \mu_2}{2}\right) = \frac{\mu_2 - \mu_1}{2} \left(-\frac{1}{2} + \frac{1}{\alpha+1} \left(1 - \frac{1}{2^\alpha} \right) \right)$$

as $\frac{1}{\alpha+1} \left(1 - \frac{1}{2^\alpha} \right) \leq \frac{1}{2}$ for $\alpha \geq 1$, we have

$$H\left(\frac{\mu_1 + \mu_2}{2}\right) \leq 0.$$

Therefore $H(\lambda) \leq 0$. Hence in both the cases $H(\lambda) \leq 0$, also $\Psi'' \geq 0$. Therefore from (2.13), we have

$$\Psi(i_1) + \Psi(i_2) - \frac{\Gamma(\alpha+1)}{2(\mu_2 - \mu_1)^\alpha} \left(J_{\mu_1}^\alpha \Psi(\mu_2) + J_{\mu_2}^\alpha \Psi(\mu_1) \right) \leq \Psi(i_1) + \Psi(i_2) - \Psi\left(\frac{\mu_1 + \mu_2}{2}\right). \quad (2.22)$$

Combining (2.11) and (2.22), we obtain (2.8). \square

3. CONCLUSION

The inequalities involve fractional integral operators gain attention in recent years. Some mathematicians have worked out on Hermite-Hadamard-Mercer type inequalities involving integral operators. In this study, we gave an identity containing Riemann-Liouville fractional integral operators and Green function. From this identity and apply some conditions, we proved Hermite-Hadamard-Mercer type inequality. We hope that many inequalities can be proved by using the idea proposed in this article and open path for further research.

Acknowledgements. Author would like to express sincere gratitude to anonymous referee(s) and editor for their careful reading and valuable suggestions that helped in improvement of the manuscript.

REFERENCES

- [1] M.K. Bakula, *Jensen-Steffensen inequality for strongly convex functions*, J. Inequal. Appl., **2018** (2018), 306.
- [2] J. Hadamard, *Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann*, J. Math. Pures Appl., **58** (1893), 171–215.
- [3] A. Hassan, A.R. Khan, *k-fractional Ostrowski type inequalities via (s, r)-convex*, Kragujevac J. Math., **49**(4) (2025), 527–540.

- [4] W. Haider, H. Budak, A. Shehzadi, F. Hezenci, H. Chen, *Advancements in Hermite-Hadamard inequalities via conformable fractional integrals for subadditive functions*, Int. J. Geom. Methods Mod. Phys., **22**(12) (2025).
- [5] F. Hezenci, H. Kara, H. Budak, *Conformable fractional versions of Hermite-Hadamard-type inequalities for twice-differentiable functions*, Bound. Value Probl., **2023** (2023), 48.
- [6] F. Hezenci, H. Budak, *An extensive study on parameterized inequalities for conformable fractional integrals*, Anal. Math. Phys., **13** (2023), 82.
- [7] F. Hezenci, *A note on fractional simpson type inequalities for twice differentiable functions*, Math. Slovaca, **73**(3) (2023), 675–686.
- [8] F. Hezenci, H. Budak, M.A. Latif, *Hermite-Hadamard-type inequalities arising from tempered fractional integrals including twice-differentiable functions*, Ukrainian Math. J., **76** (2025), 1572–1590.
- [9] H. Hudzik, L. Maligranda, *Some remarks on s -convex functions*, Aequationes Math., **48** (1994), 100–111.
- [10] M.A. Khan, J. Khan, J. Pečarić, *Generalization of Jensen and Jensen-Steffensen inequality by generalized majorization theorem*, J. Math. Inequal., **11**(4) (2017), 1049–1074.
- [11] M.A. Khan, S.H. Wu, H. Ullah, Y.M. Chu, *Discrete majorization type inequalities for convex functions on rectangles*, J. Inequal. Appl., **16** (2019), 1–18.
- [12] M.A. Khan, N. Muhammed, E.R. Nwaeze, Y.M. Chu, *Quantum Hermite-Hadamard's inequality by means of a Green's function*, Adv. Difference Equ., **2020** (2020), 99.
- [13] T.U. Khan, M.A. Khan, *Hermite-Hadamard inequality for new generalized conformable fractional operators*, AIMS Math., **6**(1) (2020), 23–38.
- [14] M.A. Khan, J. Pečarić, *New refinements of the Jensen-Mercer inequality associated to positive n -tuples*, Armen. J. Math., **12**(4) (2020), 1–4.
- [15] A. Mercer, *A variant of Jensen's inequality*, J. Inequal. Pure Appl. Math., **4**(4) (2003), 73.
- [16] M. Kian, M.S. Moslehian, *Refinements of the operator Jensen-Mercer inequality*, Electron. J. Linear Algebra, **26** (2013), 742–753.
- [17] D.S. Mitrinovic, I.B. Lackovic, *Hermite and convexity*, Aequationes Math., **28**(3) (1985), 229–232.
- [18] C.P. Niculescu, *Old and new on the Hermite-Hadamard inequality*, Real Anal. Exchange, **29**(2) (2003–04), 663–685.
- [19] S. Özcan, *Hermite-Hadamard type inequalities for m -convex and (α, m) -convex functions*, J. Inequal. Appl., **2020** (2020), 175.
- [20] H. Öğülmüs, M.Z. Sarikaya, *Hermite-Hadamard-Mercer Type Inequalities for fractional integrals*, Filomat, **35**(7) (2021), 2425–2436.
- [21] M.Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, *Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities*, Math. Comp. Model., **57**(9) (2013), 2403–2407.
- [22] E. Set, İ. İscan, M.Z. Sarikaya, M.E. Ozdemir, *On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals*, Appl. Math. Comput., **259** (2015), 875–881.
- [23] S. Sezer, Z. Eken, G. Tinaztepe, G. Adilov, *p -convex functions and some of their properties*, Numer. Funct. Anal. Optim., **42** (2021), 443–459.
- [24] G. Toader, *Some generalizations of the convexity*, Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, **1985** (1985), 329–338.
- [25] T. Tunc, S. Sonmezolu, M.Z. Sarikaya, *Integral inequalities of Hermite-Hadamard type via Green function and applications*, Appl. Appl. Math., **14**(1) (2019), 452–462.
- [26] S. Varošanec, *On h -convexity*, J. Math. Anal. Appl., **326** (2007), 303–311.
- [27] X. You, M.A. Khan, H. Ullah, T. Saeed, *Improvements of Slater's inequality by means of 4-convexity and its applications*, Mathematics, **10** (2022), 1274.

¹DEPARTMENT OF MATHEMATICS,
GOVERNMENT COLLEGE OF MANAGEMENT SCIENCES-II,
RING ROAD PESHAWAR, HIGHER EDUCATION DEPARTMENT KPK, PAKISTAN
Email address: jamroz.khan73@gmail.com