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SOME NEW BOUNDS FOR NIELSON’S BETA FUNCTION

HESHAM MOUSTAFA1

Abstract. In this paper, we introduce some inequalities for the Nielson’s Beta function
β(y) and its derivatives. To achieve this, we study the completely monotonicity of some
functions containing β(y) and the Psi function ψ(y) and we study their completely mono-
tonic degrees. Also, we present some sharp bounds for the function β(y). These new bounds
are superior to some recent results.

1. Introduction

In both theory and practice, inequalities play a central role in nearly every area of
mathematics. Although widely used, the field saw a major shift in the 1930s with the
publication of the first systematic study on the topic [5]. This pivotal work organized a
previously scattered collection of inequalities into a unified field of study. Important contri-
butions followed in [3] and [12]. Over the past few decades, inequality theory has evolved
into a vibrant and independent research area, leading to the creation of several journals
dedicated specifically to inequalities and their applications. This paper focuses on inequal-
ities involving special functions, with particular attention given to the Nielsen Beta function.

The Psi function is given by [1]:

ψ(y) =
∫ ∞

0

(
1/t
et

− e(1−y)t

et − 1

)
dt, y ∈ (0,∞) (1.1)

and satisfies the following relation [1]:

ψ(s)(1 + y) = (−1)s s!
y1+s + ψ(s)(y), s = 0, 1, 2, · · · . (1.2)
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The function ψ(y) has the following asymptotic expansion:

ψ(y) ∼ −1/2y + ln y −
∞∑
r=1

B2r
2r y2r , y → ∞ (1.3)

where Bi′s are the Bernoulli numbers. The Polygamma functions ψ(s)(y) are given by [1]:

ψ(s)(y) =
∫ ∞

0

(−1)s−1 ts e(−y)t

1 − e−t dt, s = 1, 2, · · · , y > 0.

The Nielsen’s Beta function is given by [20]:

β(y) = 1
2
(
ψ ((1 + y)/2) − ψ (y/2)

)
, y ̸= 0,−1,−2, · · ·

and has the integral representation [20]:

β(y) =
∫ ∞

0

e(1−y)t

et + 1 dt, y ∈ (0,∞) (1.4)

with the functional relations [20]:

β(1 + y) = 1/y − β(y), (1.5)

β(1 − y) = π

sin(πy) − β(y). (1.6)

In particular, β(1
2) = π

2 . And

β(y) − β(y + 2) = 1
y(y + 1) (1.7)

The function β(y) is useful in evaluating some hypergeometric functions [7]:

2F1(1, y; y + 1; −1) = y β(y), y ̸= 0,−1,−2, · · ·

and in evaluating some alternating series [21]:
∞∑
i=0

(−1)i

i a+ c
= 1
a
β

(
c

a

)
, c ̸= 0,−a,−2a, · · · .

In 2016, Mahmoud and Agarwal [8] deduced the following asymptotic expansion for Bate-
man’s G−function [2], which is G(y) = 2β(y) :

2β(y) ∼ 1
y

+
∞∑
s=1

(4s − 1)B2s
s y2s , y → ∞ (1.8)

and the following inequality:
1

2y2 + 1.5 < 2β(y) − 1
y
<

1
2y2 , y ∈ (0,∞). (1.9)

In 2017, Mahmoud et al. [9] introduced the next inequality for β(y):

ln
( 4
e2−4 + y + 1

4
e2−4 + y

)
+ 2/y
y + 1 < 2β(y) < ln

(
y + 2
y + 1

)
+ 2/y
y + 1 , y > 0. (1.10)

In 2018, Nantomah [16] deduced some useful relations for β′(y) such as:

β′(1
2) =

∞∑
k=0

4
(4k + 3)2 −

∞∑
k=0

4
(4k + 1)2 = −4G,
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where the Catalan’s constant G = 0.915965594177 · · · , ( see [4]). In 2019, Hegazi et al. [6]
refined the inequality (1.10) by:

ln
(
y +

√
2/3 + 1

y +
√

2/3

)
+
√

2/3 + 1
y(y + 1) < 2β(y) < ln

(
y −

√
2/3 + 1

y −
√

2/3

)
+ 1 −

√
2/3

y(y + 1) . (1.11)

Nantomah [17] presented the following inequalities:
(y + 1)−2

4 < β(y) − 1
2y <

y−2

2 , y > 0 (1.12)

and
−1 < y2 β′(y) < −1

2 , y ∈ (0,∞). (1.13)

After that, Nantomah [18] deduced the next inequality for β(y):

− ln(2) < β(y) − 1
y
< 0, y > 0 (1.14)

In 2021, Mahmoud et al. [10] refined (1.9) by:

1/(2y2 + 1) < 2β(y) − 1
y
<

1
2y2 , y ∈ (0,∞). (1.15)

In 2025, Moustafa and Al Sayed [14] presented for

ρ =
√

15 + 2
√

57, σ = 6 − 31ρ+ ρ3

12 ≃ 0.0884 and ξ = (
√

57 − 7)ρ
6 ≃ 0.503 (1.16)

the following inequality:

−2ρ
(
ψ(y − ξ) − ln(y + σ − 1)

)
< 2β(y) < 2ρ

(
ψ(y + ξ) − ln(y − σ)

)
, (1.17)

which refines the inequality (1.11) and they also, deduced

2ρ
(
ψ′(y + ξ) − 1

y − σ

)
< 2β′(y) < −2ρ

(
ψ′(y − ξ) − 1

y + σ − 1
)
. (1.18)

For more information about Nielsen’s Beta function, see [19] and [15].

An infinitely differentiable function T (y) on 0 < y < ∞, is completely monotonic (CM) if

(−1)iT (i)(y) ≥ 0, y > 0; i ≥ 0.

The necessary and sufficient condition [23] for the function T (y) to be CM on (0,∞) is the
convergence of the following integral:

T (y) =
∫ ∞

0
e−ytdυ(t), 0 < y < ∞

where υ(t) is non-negative measure on [0,∞). Suppose T (y) is a CM function for y > 0 and
consider that T (∞) = lim

y→∞
T (y). If yϵ[T (y) − T (∞)] is a CM function for y > 0 if and only

if ϵ ∈ [0, η] , then the number η ∈ R+ is called the CM degree of T (y) for y > 0 and denoted
by degyCM [T (y)] = η. See [11] and [13], for more detailed information on this topic.

The outline of this paper is as follows:
In Section 1, we define Nielsen’s Beta function along with some of its known inequalities.
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In Section 2, we present some preliminary functions and investigate their monotonicity.
These functions were used to prove that our results improve upon some recent findings.
In Section 3, we investigate the complete monotonicity (CM) of a function containing β(y)
and ψ(y), and we derive several inequalities for β(y) and its derivatives that refine recently
published results.
In Section 4, we demonstrate that the function

χ(y) = e
ψ(y+ 1

2 )− 1
6β(y)+ 1

12y − y, y ≥ 1
2

is strictly decreasing and convex with the sharp bounds 0 < χ(y) < e
1
6 −γ− π

12 − 1
2 . As a

result, we deduce the following sharp bounds for β(y):
1
2y − 6

(
ln
(
y + e

1
6 −γ− π

12 − 1
2
)

− ψ
(
y + 1

2
))

< β(y) < 1/(2y) − 6
(

ln(y) − ψ
(
y + 1

2
))

, y ≥ 1
2 .

2. Auxiliary Results

The following result [22] will be useful in this paper:

Corollary 2.1. Let α ∈ (0,∞) and S be a real-valued function defined on y > y0, y0 ∈ (−∞,∞)
with lim

y→∞
S(y) = 0. Then S(y) > 0, if S(y + α) < S(y) for every y ∈ (y0,∞) and S(y) < 0, if

S(y + α) > S(y) for every y ∈ (y0,∞).

Lemma 2.1. The following functions are negative on the indicated intervals.
(a) For the values of ρ, σ and ξ in (1.16), the following statement hold

Υ1(y) = −6
(

ln(y) − ψ(y + 1
2)
)

+ 1
2y − ρ

(
ψ(y + ξ) − ln(y − σ)

)
< 0, y ∈ (σ,∞) .

(b)
Υ2(y) = −9 ln(y) + 6ψ(y + 1

2) + 3ψ(y) + 3
2y < 0, y ∈ (0,∞).

(c)
Υ3(y) = −9 ln(y) + 6ψ(y + 1

2) + 3ψ(y) + 3
2y + 1

10y5 < 0, y ∈ [8,∞) .

(d)
Υ4(y) = −6 ln(y) + 6ψ(y + 1

2) − 1
4y2 < 0, y ∈ (0,∞) .

(e)

Υ5(y) = −6
(

ln(y) − ψ(y + 1
2)
)

+ 1
2y − 1

2 ln

1 + 1

y −
√

2
3

−

(
1 −

√
2
3

)
2y(y + 1) < 0, y ∈

(√
2
3 ,∞

)
.

(f)

Υ6(y) = 3
(

ln(y) − ψ(y)
)

− 1
y

− 1
2 ln

(
1 + 1

y + 1

)
− 1
y(y + 1) < 0, y ∈ [4,∞) .

(g)
Υ7(y) = 3

(
ln(y) − ψ(y)

)
− 3

2y − 1
4y2 < 0, y ∈ (0,∞) .

(h)
Υ8(y) = 3

(
ln(y) − ψ(y)

)
− 3

2y − 1
2y2 < 0, y ∈ (0,∞) .
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(i)

Υ9(y) = 3
(
ψ′(y) − 1

y

)
− 2
y2 < 0, y ∈ (1,∞) .

(j)

Υ10(y) = −6
(

ln(y) − ψ(y + 1
2)
)

− 1
2y < 0, y ∈

[
4
5 ,∞

)
.

(k)

Υ11(y) = 6
(

ln(y + e
1
6 −γ− π

12 − 1
2) − ψ(y + 1

2)
)

+ 1
2y − ln(2) < 0, y ∈

[
3
5 ,∞

)
.

Proof. (a) The first derivative of Υ1(y) is

Υ′
1(y) = −6

(1
y

− ψ′(y + 1
2)
)

− 1
2y2 − ρ

(
ψ′(y + ξ) − 1

y − σ

)
and we use (1.2) to get

Υ′
1(1 + y) − Υ′

1(y) = −l(y)
2592y2(1 + y)2(1 + 2y)2(y − δ + 1)(y − σ)(y + c)2 ,

where

l(y) = 48(−7 +
√

57) + 24
[

36
(

− 7 +
√

57
)

+
(

− 39 + 5
√

57
)
ρ

]
y

+144
[

− 65 + 8
√

57 +
(

− 111 + 15
√

57
)
ρ

]
y2 + 48

[
− 351 +

(
− 84 + 20

√
57
)
ρ

]
y4

+48
[

8
(

− 61 +
√

57
)

+
(

− 369 + 60
√

57
)
ρ

]
y3 > 0, y > 0.

(l(y) is a polynomial of degree 4 with positive coefficients). Then Υ′
1(1 + y) < Υ′

1(y) for
y > σ and by using (1.3), we get lim

y→∞
Υ′

1(y) = 0. We use Corollary 2.1 to get that Υ′
1(y) > 0

for y > σ and then Υ1(y) is increasing on (σ,∞) with lim
y→∞

Υ1(y) = 0. Hence Υ1(y) < 0 for
all y ∈ (σ,∞) .
In the same way, we will prove the result for the other functions.

(b)

Υ′
2(y + 1) − Υ′

2(y) = −3
2y2(y + 2)2(1 + 2y)2 < 0, y > 0

with lim
y→∞

Υ′
2(y) = 0 and then Υ2(y) < 0 on (0,∞).

(c) We have

Υ′
3(y + 1) − Υ′

3(y) = −L(y − 8)
2y6(1 + y)6(1 + 2y)2 < 0, y ≥ 8

where

L(y) = 2794735 + 12259142y+ 8960533y2 + 3018136y3 + 576248y4 + 66586y5 + 4638y6 + 180y7 + 3y8

with lim
y→∞

Υ′
3(y) = 0 and then Υ3(y) < 0 on [8,∞).

(d)

Υ′
4(y + 1) − Υ′

4(y) = −(1 + 7y + 7y2)
2y2(y + 2)2(1 + 2y)2 < 0, y > 0

with lim
y→∞

Υ′
4(y) = 0 and then Υ4(y) < 0 on (0,∞) .
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(e)

Υ′
5(y + 1) − Υ′

5(y) =
3h(y)

2(−6+
√

6−3y)(−3+
√

6−3y)(
√

6−3y)

y2(1 + y)2(2 + y)2(1 + 2y)2 < 0, y >

√
2
3

where
h(y) = −8(−8 + 3

√
6)) + 8(−34 + 21

√
6)y + 2(−619 + 432

√
6)y2 + 2(−756 + 635

√
6)y3

+(−723 + 757
√

6)y4 + (−117 + 160
√

6)y5 > 0, y ≥ 0
(h(y) is a polynomial of degree 5 with positive coefficients) with lim

y→∞
Υ′

5(y) = 0 and then

Υ5(y) < 0 on
(√

2
3 ,∞

)
.

(f)

Υ′
6(y + 1) − Υ′

6(y) =
−2
(

(y − 4)2 + 6(y − 4) + 2
)

y2(1 + y)2(2 + y)2(3 + y) < 0, y ≥ 4

with lim
y→∞

Υ′
6(y) = 0 and then Υ6(y) < 0 on [4,∞)

(g)

Υ′
7(y + 1) − Υ′

7(y) = −1
2y3(y + 1)3 < 0, y > 0

with lim
y→∞

Υ′
7(y) = 0 and then Υ7(y) < 0 on (0,∞) .

(h)

Υ′
8(y + 1) − Υ′

8(y) = −(2 + 3y + 3y2)
2y3(y + 1)3 < 0, y > 0

with lim
y→∞

Υ′
8(y) = 0 and then Υ8(y) < 0 on (0,∞) .

(i)

Υ9(y + 1) − Υ9(y) = y − 1
y2(y + 1)2 > 0, y > 1

with lim
y→∞

Υ′
9(y) = 0 and then Υ9(y) < 0 for y > 1.

(j)

Υ′
10(y + 1) − Υ′

10(y) =
− 1

125

(
37 + 1170(y − 4

5 ) + 2400(y − 4
5 )2 + 1000(y − 4

5 )3
)

2y2(y + 2)2(1 + 2y)2 < 0

with lim
y→∞

Υ′
10(y) = 0 and then Υ10(y) < 0 on

[ 4
5 ,∞

)
.

(k)

Υ′
11(y + 1) − Υ′

11(y) =
1

3125H
(
y − 3

5

)
2y2(1 + y)2(1 + 2y)2

(
2e 1

6 − eγ+ π
12 + 2eγ+ π

12 y
)(

2e 1
6 + eγ+ π

12 + 2eγ+ π
12 y

)
where

H(y) = 686060e 1
3 + 823272e 1

6 +γ+ π
12 − 593615eπ

6 +2γ

+
(

2897400e 1
3 + 4849000e 1

6 +γ+ π
12 − 3141150eπ

6 +2γ
)
y

+
(

4386000e 1
3 + 11058000e 1

6 +γ+ π
12 − 6391000eπ

6 +2γ
)
y2

+
(

2740000e 1
3 + 12060000e 1

6 +γ+ π
12 − 6190000eπ

6 +2γ
)
y3

+
(

600000e 1
3 + 6200000e 1

6 +γ+ π
12 − 2850000eπ

6 +2γ
)
y4
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+
(

1200000e 1
6 +γ+ π

12 − 500000eπ
6 +2γ

)
y5 > 0, y ≥ 0

then Υ′
11(y + 1) − Υ′

11(y) > 0 for y ≥ 3
5 with lim

y→∞
Υ′

11(y) = 0 and we use Corollary 2.1 to

get Υ′
11(y) < 0 for y ≥ 3

5 . Thus Υ11(y) is decreasing on y ≥ 3
5 and then Υ11(y) ≤ Υ11( 3

5 ) ≃
−0.278065 < 0 on

[ 3
5 ,∞

)
.

□

3. Main Results

In the next theorem, we investigate the complete monotonicity of a function containing β(y) and
ψ(y).
Theorem 3.1.

Wδ(y) = −β(y) + 3
(

ln(y + δ) − ψ(y)
)

− 1
y

is CM on (0,∞) if and only if δ ≥ 0. Also, the function W0(y) satisfies 1 ≤ degyCM [W0(y)] < 2.

Proof. Using(1.1), (1.4) and the identities 1
yk = 1

(k−1)!
∫∞

0 tk−1e−ytdt, and
ln
(
a
b

)
=
∫∞

0
e−bt−e−at

t dt, a, b > 0 (see [1]), we have

Wδ(y) =
∫ ∞

0

φδ(t) e−yt

t(et − 1)(et + 1)dt,

where
φδ(t) = −3 e−δt

(
e2t − 1

)
+ t
[
e2t + 4et + 1

]
.

Assuming that δ ≥ 0, then we get

φδ(t) ≥ −3
(
e2t − 1

)
+ t
[
e2t + 4et + 1

]
= t5

30 +
∞∑
r=5

f(r)
(r + 1)! t

r+1,

where
f(r) = −3(2r+1) + (r + 1)(2r + 4) = 2r(r − 5) + 4(r + 1) > 0, r ≥ 5.

Consequently, Wδ(y) is completely monotonic on (0,∞) for δ ≥ 0. On the other side, if Wδ(y) is
CM, then we have

y Wδ(y) = 3y
(

ln(y + δ) − ψ(y)
)

− y β(y) − 1 > 0 y > 0. (3.1)

Using (1.8), we have lim
y→∞

y β(y) = 1
2 and the asymptotic (1.3), we get lim

y→∞
y
[

ln(y+δ)−ψ(y)
]

= δ+ 1
2 .

From (3.1), we conclude that 3 δ ≥ 0 and then δ ≥ 0. And also W0(∞) = lim
y→∞

W0(y) = 0.
Next,

y W0(y) =
∫ ∞

0

∆1(t)
t2(et − 1)2(et + 1)2 e

−ytdt, y ∈ R+

where
∆1(t) = 3

(
1 − 2e2t + e4t

)
− 4t2

(
et + e2t + e3t

)
= t6

5 + 2t7

5 + 269t8

630 + 101t9

315 + 2039t10

10800 +
∞∑
p=9

bp
(p+ 2)! t

p+2 > 0, p ≥ 9

with
bp = 3

(
4p+2 − 2p+3

)
− 4(p+ 2)(p+ 1)

(
3p + 2p + 1

)
= 3

(
3p+2 − 2p+3 + (p+ 2)3p+1 + (p+ 2)(p+ 1)3p

(1
2 + p

18 + p(p− 1)
216 + p(p− 1)(p− 2)

3240

)
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+
p+2∑
s=6

(
p+2
s

)
3p+2−s

)
− 4(p+ 2)(p+ 1)

(
3p + 2p + 1

)
.

Then

bp
3p = 3

(
9 − 8

(2
3

)p
+ 3(p+ 2) + (p+ 2)(p+ 1)

3240

(
1620 + 167p+ 12p2 + p3

)
+
p+2∑
s=6

(
p+2
s

)
32−s

)
− 4(p+ 2)(p+ 1)

(
1 +

(2
3

)p
+
(1

3

)p)
.

Since the sequence ap = 9 − 8
(

2
3

)p
is increasing for p ≥ 9. Then ap ≥ a9 ≃ 8.78 > 0 and hence

bp
3p(p+ 2)(p+ 1) >

1620 + 167p+ 12p2 + p3

1080 − 4
((2

3

)p
+
(1

3

)p)
− 4

>
67
15 − 4

((2
3

)9
+
(1

3

)9
)

− 4 ≃ 0.362 > 0, p ≥ 9.

Then, 1 ≤ degyCM [W0(y)] . But,

y2 W0(y) =
∫ ∞

0

2 ∆2(t)
t3(et − 1)3(et + 1)3 e

−ytdt, y ∈ R+

where

∆2(t) = 3
(

1 − e6t
)

+ 2t3
(

1 + 6e2t + e4t
)
et + e2t(−9 + 4t) + e4t(9 + 4t3)

with ∆2(3.04) ≃ 248854.094 and ∆2(3.05) ≃ −103877. Hence y2 W0(y) is not CM on R+ and then
deglCM [W0(y)] < 2. □

From Theorem 3.1, we obtain the next two corollaries:

Corollary 3.1. For y > 0 and θ ≥ 0, we have

β(y) < 3
(

ln(y + θ) − ψ(y)
)

− 1
y
, (3.2)

where θ = 0 being the best.

Proof. The inequality (3.2) is deduced from y Wθ(y) > 0 which gives θ ≥ 0 as we have discussed in
proving Theorem 1.1. Since ln(y) is increasing on y > 0, we get for θ ≥ 0, that ln(y) ≤ ln(y + θ)
which proves that θ = 0 is the sharpest in (3.2). □

Remark 3.1. (a) Since Υ6(y) < 0 on [4,∞) , we get that

3
(

ln(y) − ψ(y)
)

− 1
y
< 1/2 ln

(
2 + y

1 + y

)
+ 1
y(1 + y)

which implies that the upper of (3.2) refines the upper of (1.10) for all y ≥ 4.

(b) Since Υ7(y) < 0 on y > 0, we get that

3
(

ln(y) − ψ(y)
)

− 1
y
<

1
2y + 1

4y2

which implies that the upper of (3.2) refines the upper of (1.9) for all y > 0.
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(c) Since Υ8(y) < 0 on y > 0, we get that

3
(

ln(y) − ψ(y)
)

− 1
y
<

1
2y + 1

2y2

which implies that the upper of (3.2) refines the upper of (1.12) for all y > 0.

Corollary 3.2. For y > 0, θ ≥ 0 and s ∈ N, we have

3
(

(−1)s ψ(s)(y) + (s− 1)!
(y + θ)s

)
+ s!
ys+1 < (−1)s+1β(s)(y) (3.3)

with the best constant θ = 0.

Proof. The inequality (3.3) is deduced from ys+1 (−1)sW (s)
θ (y) > 0 for y > 0. Then

lim
y→∞

ys+1(−1)sW (s)
θ (y) = 3 lim

y→∞
ys+1

[
(−1)s+1ψ(s)(y) − (s− 1)!

(y + θ)s
]

+(−1)s+1 lim
s→∞

ys+1β(s)(y) − s! ≥ 0. (3.4)

Using the asymptotic (1.8), we have (−1)s+1 lim
s→∞

ys+1β(s)(y) = −s!
2 and by using the asymptotic

(1.3), we have

lim
y→∞

ys+1
[
(−1)s+1ψ(s)(y) − (s− 1)!

(y + θ)s
]

= s!
(
θ + 1

2

)
.

From (3), we conclude that 3 s! θ ≥ 0 and then θ ≥ 0. Since 1
ys is strictly decreasing function on

(0,∞) for s = 1, 2, ... and then θ = 0 is the sharpest in (3.3). □

Remark 3.2. Letting s = 1, and θ = 0 in (3.3), we get

3
(1
y

− ψ′(y)
)

+ 1
y2 < β′(y) (3.5)

Since Υ9(y) < 0 on y > 1, we get that

3
(

1/y − ψ′(y)
)

+ 1/y2 >
−1
y2

which implies that the lower of (3.5) refines the lower of (1.13) for all y > 1.

In the following Proposition, we will refine the inequality (3.2)

Proposition 3.1. For y ≥ 11/5, we have

β(y) < 3
(

ln(y) − ψ(y)
)

− 1
y

− 1
10y5 , (3.6)

Proof. Let Λ(y) = β(y)−3
(

ln(y)−ψ(y)
)

+ 1
y + 1

10y5 and then Λ′(y) = β′(y)+3ψ′(y)− 3
y − 1

y2 − 1
2y6 .

By using the relation (1.2) and (1.7), we get

Λ′(y + 2) − Λ′(y) =
−2 f

(
y − 11

5
)

y6(1 + y)2(2 + y)6 < 0, y ≥ 11
5

where
390625f(y) = 319140802 + 4885742080y + 9308991400y2 + 7990092125y3 + 3852587500y4

+1117693750y5 + 194625000y6 + 18828125y7 + 781250y8 > 0, y ≥ 0
then Λ′(y + 2) − Λ′(y) < 0 for y ≥ 11

5 with lim
y→∞

Λ′(y) = 0 and we use Corollary 2.1 to get Λ′(y) > 0

for y ≥ 11
5 . Then Λ(y) is increasing for y ≥ 11

5 with lim
y→∞

Λ(y) = 0 and hence Λ(y) < 0 for y ≥ 11
5 . □

Remark 3.3. The upper bound of (3.6) improves its counterparts of (3.2) for y ≥ 2.2.
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4. Some sharp bounds for the Nielson’s β−function

In the following Proposition, we introduce some sharp bounds for β(y).

Proposition 4.1. For y ≥ 1
2 , the function

χ(y) = eψ(y+ 1
2 )− 1

6β(y)+ 1
12y − y (4.1)

is strictly decreasing and convex, and as consequence
1
2y − 6

(
ln
(
y + e

1
6 −γ− π

12 − 1
2
)

− ψ
(
y + 1/2

))
< β(y) < 1

2y − 6
(
ln(y + 0) − ψ

(
y + 1/2

))
, y ≥ 1

2
(4.2)

where the constants 0 and e 1
6 −γ− π

12 − 1
2 ≈ 0.0105083 are the best possible.

Proof.

χ′(y) =
(
ψ′(y + 1/2

)
− 1

6β
′(y) − 1

12y2

)
eψ(y+ 1

2 )− 1
6β(y)+ 1

12y − 1,

and
1

eψ(y+1/2)− 1
6β(y)+ 1

12y

χ′′(y) =
(
ψ′(y + 1

2
)

− 1
6β

′(y) − 1
12y2

)2
+ψ′′(y+ 1

2
)

− 1
6β

′′(y) + 1
6y3 ≜ Ω1(y).

Now, by using (1.7), we get

Ω1(y + 2) − Ω1(y) = −ψ′ (y + 1/2)
3y2(y + 1)2(2 + y)2(1 + 2y)2(3 + 2y)2

(
18 + 150y + 1451y2 + 5216y3

+ 9176y4 + 9024y5 + 5088y6 + 1536y7 + 192y8
)

+ β′(y)
18y2(y + 1)2(2 + y)2(1 + 2y)2(3 + 2y)2

(
18 + 150y + 1451y2 + 5216y3

+ 9176y4 + 9024y5 + 5088y6 + 1536y7 + 192y8
)

+ 1
36y4(y + 1)4(2 + y)4(1 + 2y)4(3 + 2y)4

(
972 + 23976y + 320382y2

+ 2430162y3 + 13132626y4 + 52868532y5 + 156888155y6 + 343105960y7

+ 558868304y8 + 686121152y9 + 640000400y10 + 454398592y11 + 244100672y12

+ 97624320y13 + 28179456y14 + 5548032y15 + 666624y16 + 36864y17
)

Also, let

Ω2(y) =
y2(y + 1)2(2 + y)2(1 + 2y)2(3 + 2y)2

(
Ω1(y + 2) − Ω1(y)

)
18 + 150y + 1451y2 + 5216y3 + 9176y4 + 9024y5 + 5088y6 + 1536y7 + 192y8 ,

then

Ω2(y + 2) − Ω2(y) =
A(y− 1

2 )
C(y) D(y)

18y2(y + 1)2(2 + y)2(3 + y)2(4 + y)2(1 + 2y)2(3 + 2y)2(5 + 2y)2(7 + 2y)2

with

C(y) = 1054826 + 2945730y + 3572267y2 + 2457888y3 + 1049816y4 + 285120y5 + 48096y6

+ 4608y7 + 192y8,

D(y) = 18 + 150y + 1451y2 + 5216y3 + 9176y4 + 9024y5 + 5088y6 + 1536y7 + 192y8,
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and

8 A(y) = 593509809240204966 + 17929659735419721030y + 194244817332074601681y2

+ 1175888223519972411240y3 + 4708482753046300072749y4

+ 13612042463141357093790y5 + 29958147851848857500986y6

+ 51989396109982858532240y7 + 72917363584170434755612y8

+ 84150002031089589265200y9 + 80978394666244288508208y10

+ 65629513144336823425920y11 + 45127855796051686180864y12

+ 26466688547015594384000y13 + 13285793637587407254400y14

+ 5719287968655745474560y15 + 2112239570722290238464y16

+ 668522306559352565760y17 + 180837257603564720128y18

+ 41619950636315033600y19 + 8095855103353987072y20

+ 1318551079216250880y21 + 177482786245410816y22

+ 19389436809707520y23 + 1675217716641792y24

+ 110113865072640y25 + 5172133625856y26 + 154581073920y27 + 2208301056y28.

Using A(y) > 0, C(y) > 0, D(y) > 0 for all y ≥ 0, then we obtain Ω2(y+ 2) − Ω2(y) > 0 for all y ≥ 1
2 .

Using the asymptotic expansions (1.3) and (1.8) and their derivatives, we have

lim
y→∞

Ω2(y)

= lim
y→∞

[ 1
18+150y+1451y2+5216y3+9176y4+9024y5+5088y6+1536y7+192y8

36y2(y + 1)2(2 + y)2(3 + 2y)2

×
(

324 + 11880y + 124416y2 + 644244y3 + 2043301y4 + 4367224y5 + 6562372y6

+ 7041384y7 + 5395392y8 + 2916048y9 + 1081536y10 + 261120y11 + 36864y12 + 2304y13
)

+ O(y−4)
]

= 0

so, Ω2(y) < 0 for all y ≥ 1
2 . Now, Ω1(y + 2) − Ω1(y) < 0 and

lim
y→∞

Ω1(y) = lim
y→∞

[1 + 8y + 24y2 + 128y3 + 496y4 + 768y5 + 960y6

144y6(1 + 2y)4 +O(y−5)
]

= 0

so, Ω1(y) > 0 for all y ≥ 1
2 . Then χ′′(y) > 0 for all y ≥ 1

2 and hence the function χ(y) is convex for
y ∈ [ 1

2 ,∞). Also,

lim
y→∞

χ′(y) = lim
y→∞

[−(1 + 10y + 48y2 + 144y3 + 192y4 + 960y5 + 2112y6 + 1152y7)
576y5(1 + 2y)4 +O(y−3)

]
= 0

and thus χ′(y) < 0 all y ≥ 1
2 . Hence the function χ(y) is decreasing on [ 1

2 ,∞) with χ( 1
2 ) =

e
1
6 −γ− π

12 − 1
2 and

lim
y→∞

χ(y) = lim
y→∞

(
1

24(y + 1
2 )

−
(y + 1

2 )
24y2 + 1

24(y + 1
2 )2 + 1

96y2 +O(y−3)
)

= 0.

Then, for all y ≥ 1
2 , we have

0 < eψ(y+ 1
2 )− 1

6β(y)+ 1
12y − y < e

1
6 −γ− π

12 − 1
2 ,

where the constants 0 and e
1
6 −γ− π

12 − 1
2 are the best possible. □
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Remark 4.1. (a) Since Υ1(y) < 0 on (σ,∞) , we get that

−6
(

ln(y) − ψ(y + 1/2)
)

+ 1
2y < ρ

(
ψ(y + ξ) − ln(y − σ)

)
, y > σ

which implies that the upper of (4.2) refines the upper of (1.17) for all y ≥ 1
2 .

(b) Since Υ2(y) < 0 on
[ 1

2 ,∞
)
, we get that

−6
(

ln(y) − ψ(y + 1/2)
)

+ 1
2y < 3

(
ln(y) − ψ(y)

)
− 1
y

which implies that the upper of (4.2) refines the upper of (3.2) at θ = 0 for all y ≥ 1
2 .

(c) Since Υ3(y) < 0 on [8,∞) , we get that

−6
(

ln(y) − ψ(y + 1/2)
)

+ 1
2y < 3

(
ln(y) − ψ(y)

)
− 1
y

− 1
10y5

which implies that the upper of (4.2) refines the upper of (3.6) for all y ≥ 8.

(d) Since Υ4(y) < 0 on
[ 1

2 ,∞
)
, we get that

−6
(

ln(y) − ψ(y + 1
2)
)

+ 1
2y <

1
2y + 1

4y2 ,

which implies that the upper of (4.2) refines the upper of (1.15) for all y ≥ 1
2 .

(e) Since Υ5(y) < 0 on
(√

2
3 ,∞

)
, we get that

−6
(

ln(y) − ψ(y + 1/2)
)

+ 1
2y < 1/2 ln

y −
√

2
3 + 1

y −
√

2
3

+
1 −

√
2
3

2y(y + 1) ,

which implies that the upper of (4.2) refines the upper of (1.11) for all y >
√

2
3 .

(f) Since Υ10(y) < 0 on
[ 4

5 ,∞
)
, we get that

−6
(

ln(y) − ψ(y + 1
2)
)

+ 1
2y <

1
y
,

which implies that the upper of (4.2) refines the upper of (1.14) for all y ≥ 4
5 .

(g) Since Υ11(y) < 0 on
[ 3

5 ,∞
)
, we get that

−6
(

ln
(
y + e

1
6 −γ− π

12 − 1
2

)
− ψ

(
y + 1

2

))
+ 1

2y >
1
y

− ln(2),

which implies that the lower of (4.2) refines the lower of (1.14) for all y ≥ 3
5 .

In the following Proposition, we will refine the inequality (4.2).

Proposition 4.2. For y ≥ 9
4 , we have

β(y) < −6
(

ln(y) − ψ(y + 1
2)
)

+ 1
2y − 13

160y5 (4.3)



SOME NEW BOUNDS FOR NIELSON’S BETA FUNCTION 37

Proof. Let S(y) = β(y) + 6
(

ln(y) − ψ(y + 1
2 )
)

− 1
2y + 13

160y5 and then S′(y) = β′(y) − 6ψ′(y + 1
2 ) +

6
y + 1

2y2 − 13
32y6 . By using the relation (1.2) and (1.7), we get

S′(y + 2) − S′(y) =
−v
(
y − 9

4
)

8y6(y + 1)2(2 + y)6(1 + 2y)2(3 + 2y)2 < 0, y ≥ 9
4

where

524288 v(y) = 700649248491 + 140729760216552y + 461141774060608y2 + 689388303437184y3

+617757770387200y4 + 368300208001024y5 + 153333113815040y6 + 45480722759680y7

+9610982916096y8 + 1418145038336y9 + 139179589632y10 + 8178892800y11 + 218103808y12

then S′(y+2)−S′(y) < 0 for y ≥ 9
4 with lim

y→∞
S′(y) = 0 and we use Corollary 2.1 to get S′(y) > 0

for y ≥ 9
4 . Then S(y) is increasing for y ≥ 9

4 with lim
y→∞

S(y) = 0 and hence S(y) < 0 for y ≥ 9
4 . □

Remark 4.2. The upper of (4.3) refines the upper of (4.2) for all y ≥ 9
4 .

In the following, we will introduce an inequality containing β′(y) which will refine (3.5):

Proposition 4.3. For y ≥ 1
5 , we have

6
(
ψ′(y + 1/2) − 1/y

)
− 1

2y2 < β′(y). (4.4)

Proof. Let F (y) = −β′(y) + 6ψ′
(
y + 1

2

)
− 6

y − 1
2y2 . By using the relation (1.2) and (1.7), we get

F (y + 2) − F (y) =
u
(
y − 1

5
)

y2(y + 1)2(2 + y)2(1 + 2y)2(3 + 2y)2 > 0, 5y ≥ 1

where
625u(y) = 4117 + 118140y + 236425y2 + 156000y3 + 32500y4 > 0, y ≥ 0

then F (y + 2) − F (y) > 0 for y ≥ 1
5 with lim

y→∞
F (y) = 0 and we use Corollary 2.1, we get F (y) < 0

for y ≥ 1
5 . □

Remark 4.3. (a) Since Υ′
1(y) > 0 on (σ,∞) , we get that

6
(
ψ′(y + 1/2) − 1/y

)
− 1

2y2 > σ
(
ψ′(y + ξ) − 1

y − σ

)
, y > σ

which implies that the lower of (4.4) refines the lower of (1.18) for all y ≥ 1
5 .

(b) Using Since Υ′
2(y) > 0 on (0,∞) , we get that

6
(
ψ′(y + 1/2) − 1/y

)
− 1

2y2 > 3
(

1/y − ψ′(y)
)

+ 1
y2 ,

which implies that the lower of (4.4) refines the lower of (3.5) for all y ≥ 1
5

5. Conclusion

The primary findings of this paper are presented in Corollaries 3.1 and 3.2, and Proposition 4.1.
Specifically, the author examined two approximations for Nielsen’s Beta function. As a result, the
new inequalities for β(y) refine several recent results. These findings also provide sharper bounds
for various alternating series, generalized hypergeometric functions, and related functions.
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