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SOME NEW BOUNDS FOR NIELSON’S BETA FUNCTION

HESHAM MOUSTAFA!

ABSTRACT. In this paper, we introduce some inequalities for the Nielson’s Beta function
B(y) and its derivatives. To achieve this, we study the completely monotonicity of some
functions containing S(y) and the Psi function 1 (y) and we study their completely mono-
tonic degrees. Also, we present some sharp bounds for the function B(y). These new bounds
are superior to some recent results.

1. INTRODUCTION

In both theory and practice, inequalities play a central role in nearly every area of
mathematics. Although widely used, the field saw a major shift in the 1930s with the
publication of the first systematic study on the topic [5]. This pivotal work organized a
previously scattered collection of inequalities into a unified field of study. Important contri-
butions followed in [3] and [12]. Over the past few decades, inequality theory has evolved
into a vibrant and independent research area, leading to the creation of several journals
dedicated specifically to inequalities and their applications. This paper focuses on inequal-
ities involving special functions, with particular attention given to the Nielsen Beta function.

The Psi function is given by [1]:

) e(1-y)t
Y(y) :/0 (1/75 - )dt, y € (0,00) (1.1)

et et —1
and satisfies the following relation [!]:

(—=1)° s!

y1+s +¢(8)(y)7 s=0,1,2,---. (12)

PO +y) =
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The function ¢ (y) has the following asymptotic expansion:

T
Y(y) ~=1/2y +Iny =3 o=,
r=1

— 1.3
r 42 Yy — 00 (1.3)

where B;'s are the Bernoulli numbers. The Polygamma functions (%) (y) are given by [1]:

. 00 _1)371 15 e(ﬁy)t
w()(y):/o ( ———dt, s=12., y>0.

The Nielsen’s Beta function is given by [20]:

Bu) = (0 (U+9)/D -V /). y#A0-1-2-

2
and has the integral representation [20]:
0o 6(l—y)iﬁd
B) = [ St e (0.00) (14)
with the functional relations [20]:
Bl+y) =1/y = B(y), (1.5)
7r
In particular, ﬁ(%) = 5. And
1
- +2)=——— 1.7
Bly) — By +2) ST D) (1.7)

The function 5(y) is useful in evaluating some hypergeometric functions [7]:

and in evaluating some alternating series [21]:

(=1 1 /¢
Zi(a—i—)cza/8<a>’ C#O,—a,—2a,---
=0

In 2016, Mahmoud and Agarwal [8] deduced the following asymptotic expansion for Bate-
man’s G—function [2], which is G(y) = 28(y) :

1 X (4% —1)Byg
2B ~ oy Dy o (1)
vy = 5y
and the following inequality:
1 1
— < 2 - —< — . 1.
715 W= <gm vEDx) (1.9)
In 2017, Mahmoud et al. [9] introduced the next inequality for 5(y):
4
S Ty+1 2/y y+2 2/y
In [ £ - <2 <ln< >+ , > 0. 1.10
( aat+y ) g1 yt1) Ty o
In 2018, Nantomah [16] deduced some useful relations for '(y) such as:

1 & 4 > 4
ﬂ(§)=2(4k+3)2—]§(4k+1)2 -

k=0

el
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where the Catalan’s constant G = 0.915965594177 - - -, ( see [1]). In 2019, Hegazi et al. [0]
refined the inequality (1.10) by:

Vv2/3+1 V2/3+1 —2/3+1 1-+/2/3
o (YEVEBELY  VEBEL g0 gy (Y V2B ALY ERENCREY
y+v2/3 y(y+1) y—V2/3 yly+1)
Nantomah [17] presented the following inequalities:
(y+1)~° 1 _y?
vl <L 1.12
;<P g, < w0 (1.12)
and

—1
“1<y? Bly) <> ye(0,0) (1.13)
After that, Nantomah [18] deduced the next inequality for 3(y):
1
—1In(2) < B(y) — ; <0, y>0 (1.14)
In 2021, Mahmoud et al. [10] refined (1.9) by:
1 1
/(27 +1) <2B(y) — = < = : 1.1
JF + 1) <200) < S < p pE(0,) (1.15)
In 2025, Moustafa and Al Sayed [11] presented for
—~31 3 /57 —
p=115+2V57, o= 6317;” ~0.0884 and ¢ = (5767)’) ~0.503  (1.16)

the following inequality:

~20(b(y—&) —n(y+0 1)) <28 < 20(L(y+ &)~y —0)),  (117)
which refines the inequality (1.11) and they also, deduced

2p(W0+ - —) <20 <2(Vu--———). (118

For more information about Nielsen’s Beta function, see [19] and [15].

An infinitely differentiable function 7'(y) on 0 < y < o0, is completely monotonic (CM) if
(—1)'T(y) > 0, y >0 i>0.

The necessary and sufficient condition [23] for the function T'(y) to be CM on (0, 00) is the
convergence of the following integral:

T(y) = / e Ytdu(t), 0<y<oo
0
where v(t) is non-negative measure on [0, c0). Suppose T'(y) is a CM function for y > 0 and
consider that T'(co0) = yli_)nc}o T(y). If y*[T'(y) — T'(c0)] is a CM function for y > 0 if and only

if € € [0,7], then the number 7 € R is called the CM degree of T'(y) for y > 0 and denoted
by deg, ;T (y)] = n. See [11] and [13], for more detailed information on this topic.

The outline of this paper is as follows:
In Section 1, we define Nielsen’s Beta function along with some of its known inequalities.
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In Section 2, we present some preliminary functions and investigate their monotonicity.
These functions were used to prove that our results improve upon some recent findings.

In Section 3, we investigate the complete monotonicity (CM) of a function containing 5(y)
and 1 (y), and we derive several inequalities for 5(y) and its derivatives that refine recently
published results.

In Section 4, we demonstrate that the function

) = ¢ (ut2)—shwtn y>

ﬂi?/?

( 1
xX\Y 9
is strictly decreasing and convex with the sharp bounds 0 < x
result, we deduce the following sharp bounds for 8(y):
1 1= 1 1
o —6 <1n(y+eé 7T - 5) w(y+2)> <By) <1/(2y) -6 <1n(y)¢(y+)> s Y2
2. AUXILIARY RESULTS
The following result [22] will be useful in this paper:

Corollary 2.1. Let a € (0,00) and S be a real-valued function defined on y > yo, yo € (—00,00)
with ILm S(y) = 0. Then S(y) > 0, if S(y + ) < S(y) for every y € (yo,0) and S(y) < 0, if
y—00

S(y + a) > S(y) for every y € (yo,00).

Lemma 2.1. The following functions are negative on the indicated intervals.
(a) For the values of p, o and & in (1.16), the following statement hold

11(0) = =6(In(w) — (o + ) + 5~ p(W+E) ~ Iy =) <0 e (),
(b) . ;
T2(y) = —91n(y) +6u(y + 5) +3¢(y) + % < 0, ye€(0,00).
© 1 3 1
Ta(y) = —9In(y) + 64 (y + 5) +3v(y) + % 105 < 0, ye8,00).
(d) . .
T4(y):—6hl(y)+6¢(y+§)—@ <0’ yE (O’OO)
(e)

To) =3(1n) ~ v) - 5~ g (14 27 ) - ot <00 yeltoo)
(&) s
Try) =3(n(y) ~¥@) ~ 5.~ 72 <0 v 0.
(1)
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Y Y
§))
Tuoly) = -6(1) ~ vl + 3)) - 5 <0, v € |F.00)
(k)
T11(y) = 6(1n(y+eé*7*% - %) — Yy + %)) + % —In(2) <0, ye [z,oo) .

Proof. (a) The first derivative of Y (y) is

0 —-s(— ) -9~ )

and we use (1.2) to get

—l(y)

) =) = g P+ 2P 0+ Dy~ o)y + P

where
(y) = 48(—7+/57)+24 36(—7+\/ﬁ)+(—39+5\/ﬁ)p1y
1144 —65+8x/57+(—111+15x/57)p y? + 48 —351+(—84+20\/§)p]y4
+488<61+\/Eﬁ)+<369+60\/ﬁ>p]y3>0, y > 0.

(I(y) is a polynomial of degree 4 with positive coefficients). Then T} (1 + y) < T} (y) for
y > o and by using (1.3), we get ILm T/ (y) = 0. We use Corollary 2.1 to get that T (y) >0
y—00

for y > o and then Y;(y) is increasing on (o, 00) with lim T;(y) = 0. Hence Y1 (y) < 0 for
Yy—00
all y € (0,00).

In the same way, we will prove the result for the other functions.

-3

T 1) — 7T} =
with ILm T4 (y) = 0 and then To(y) < 0 on (0, c0).
Yy—00
(c) We have
—L(y—8)
Yh(y +1) — Th(y) = <0, > 38
where

L(y) = 2794735 4+ 12259142y 4+ 8960533y + 3018136y° 4+ 576248y* 4 66586y° + 4638y° + 180y7 + 31°
with li_>m T%(y) = 0 and then T5(y) < 0 on [8,0).
Y—>00
(d)

—(1+ 7y + 7y?)
T/ 1 _ T/ _ (

with lim Y% (y) = 0 and then T4(y) < 0 on (0,00).
y—00

<0, y >0
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3h(y)
— — — — _ 2
YLy 4 1) - YL(y) = ZOVEB BT B \/7
s D =T0) = S 23 4 2+ 2P >3
where

h(y) = —8(—8 + 3v/6)) + 8(—34 + 21V6)y + 2(—619 + 432v/6)y? + 2(—756 + 635v/6)y°
+(=723 4+ 757V6)y* + (=117 + 160v/6)y° >0, >0
(h(y) is a polynomial of degree 5 with positive coefficients) with lim Y{(y) = 0 and then
Yy—00

T5(y) <0 on ( %,oo).

/ 2( )2 4 6(y — 4)+2)
Te(y+1
oly+1) - Y 1+y) 2+9)B+y)
with lim T§(y) = 0 and then Tg(y) < 0 on [4, c0)
Yy—00

(2)

<0, y=4

—1
! v e

with UILI& Y% (y) = 0 and then T7(y) < 0 on (0,00).
(h)

<0, y>0

Q43+ 37)

Thy+1) — Th(y) = 0
8(y+ ) S(y) 2y3(y+ 1)3 <\, y > 0
with le T%(y) = 0 and then Tg(y) < 0 on (0,00).
Y—>00
(i)
Toly+1) = Toly) = =22 _ >0, y>1
Qy gy*yg(y_i_l)Q ’ y
with ILm T5(y) = 0 and then To(y) < 0 for y > 1.
Yy—00

)
/ , — 135 (37 + 1170(y — 2) + 2400(y — 2)? + 1000(y — %)3)
ol o) = 202(y + 2)2(1 + 2y)2

with lim T(y) = 0 and then Tio(y) < 0 on[4, 00).
Y—00
(k)

<0

1 3
mH(y— 5)

Til(y + 1) N Til(y) - 1 s s 1 s s
22(1+y)* (1 + 2@/)2(26g — eVt 427 y) (2ea et 4 2ert y)

where
H(y) = 6860606% =+ 8232726é+7+% _ 5936156%+2’Y
+(2897400¢ + 4849000687+ — 31411506727 )y

+ (43860006 + 11058000e# 7 % — 6391000¢F+27 )2
+ (2740000e% +12060000e 7+ — 61900006%+2’v)y3

+ 600000¢ 3 + 62000006%+V+% _ 2850000€%+2’Y>y4
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+(12000006%+7+% _ 5000006%“7)3;5 >0, y>0

then Y7, (y 4+ 1) — Y4, (y) > 0 for y > 2 with yli_>nolo 1%, (y) = 0 and we use Corollary 2.1 to

get T4y (y) <0 for y > 2. Thus T11(y) is decreasing on y > 2 and then Y11 (y) < T11(2) ~
—0.278065 < 0 on [£,00).
]

3. MAIN RESULTS

In the next theorem, we investigate the complete monotonicity of a function containing 5(y) and
P(y)-
Theorem 3.1. ]
Woly) = ~B(y) +3(Inly +9) ~0(y) ~
is CM on (0,00) if and only if 6 > 0. Also, the function Wy(y) satisfies 1 < deg¥,, [Wo(y)] < 2.
Proof. Using(1.1), (1.4) and the identities % = ﬁ J S th"temvidt, and
In (%)= [° Ldt a,b> 0 (see [1]), we have
oo —yt
ps(t) e
%% = ————dt
5(w) /0 et —1)(et +1)
where
ws(t) = —3 e (e% - 1) —&—t[e% + 4e’ + 1}.
Assuming that § > 0, then we get

5 0
es(t) = —3(62t - 1) +t[62t + 4et + 1} = g—o +§m r+1
where
Fr)= =32+ (r+ D@7 +4) =27(r = 5) +4(r +1) >0, r>5.

Consequently, Ws(y) is completely monotonic on (0,00) for § > 0. On the other side, if Ws(y) is
CM, then we have

y Wily) = 3y(In(y +0) = ¥(y)) —y Bly) 1> 0 y>0. (3.1)
Using (1.8), we have le y B(y) = 1 and the asymptotic (1.3), we get ILm y|In(y+0)—vy(y)| = o+
Yy—oo Yy—+00

From (3.1), we conclude that 3 § > 0 and then § > 0. And also Wy(c0) = ILm Wo(y) = 0.
Y—00
Next,

N[

* Ay (t) _yt
— dt Rt
Y WO(y) A tQ(et — 1)2(€t + 1)2 € ) Y €
where
A(t) = 3(1 —2e% 4 e4t) — 4¢? (et + et + e3t)
o 267 2698 1010 2039t10 >
= —4+= tp+2 >0, >9

5 5 T30 T35 T 10800 ;::9 b=

with
by = 3(41’+2 - 2P+3) —Ap+2)(p+1) (3P v or g 1)

L p  pp—=1)  pp—1)(p-2)
— p+2 _ 9p+3 p+1 2 I
3(3 23 4 (p 4+ 2)3P 1 (p+ 2)(p+1)3 (2+18+ e )
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p+2
+> (") 3?*“) —4(p+2)(p+ 1)(31’ +27 4 1).
s=6
Then
by 2\P (p+2)(p+1) > 3
op 3 9—8<7> 3(p+2 7(1620 167p + 12
3 ( 3) 3D TG +H16Tp+120° + ')
p+2
2\ P 1\P
P2y 32=5 | _4(p 42 {1 (f) (7) .
+s§=:6(s) ) p+2e+1{1+(3) +(3
p
Since the sequence ap:9—8(%) is increasing for p > 9. Then a, > a9 ~ 8.78 > 0 and hence
2 3
by o 1620 + 167p + 12p° +p 4 (Z)P+(1>P 4
3r(p+2)(p+1) 1080 3 3
67 2\9  /1\9
2y (7) (7) —4~0362>0, p>09.
> <3+3 0.362>0, p>9

Then, 1 < degf,, [Wo(y)]. But,

© AL .
2 Wo(y) = 2 yt +
Y Woly) /0 Bl —1p(ery1)p ¢ 4 vER

where
As(t) = 3(1 - th) + 23 (1 +6e2t + e4t)et + (=9 + 4t) + ¥ (9 + 4t3)

with A (3.04) ~ 248854.094 and Ay(3.05) ~ —103877. Hence y*> Wy(y) is not CM on RT and then
degear [Wo(y)) < 2. 0

From Theorem 3.1, we obtain the next two corollaries:

Corollary 3.1. Fory >0 and 6 > 0, we have

8(s) < 3(Inty+6) ~ v(6)) - . (32)

where § = 0 being the best.

Proof. The inequality (3.2) is deduced from y Wy(y) > 0 which gives § > 0 as we have discussed in
proving Theorem 1.1. Since In(y) is increasing on y > 0, we get for 6 > 0, that In(y) < In(y + 6)
which proves that § = 0 is the sharpest in (3.2). O

Remark 3.1. (a) Since Yg(y) < 0 on [4,00), we get that

3(ln(y) *w(y)) - 5 <1/2mn G:Z) " y(11+y)

which implies that the upper of (3.2) refines the upper of (1.10) for all y > 4.

(b) Since Y7(y) < 0 on y > 0, we get that
1 1 1
3(In(y) —vW) — — < 5o + 13
which implies that the upper of (3.2) refines the upper of (1.9) for all y > 0.
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(c) Since YTg(y) <0 on y > 0, we get that

3(n) = v) ~ 1 < 5o+ 53

which implies that the upper of (3.2) refines the upper of (1.12) for all y > 0.
Corollary 3.2. Fory > 0,0 >0 and s € N, we have

-1 s!
3((=1)* v (s _1)s+1g() 3.3
(070w + ge) + o < GO (3.3)
with the best constant 6 = 0.
Proof. The inequality (3.3) is deduced from y**! (—1)SW98) (y) > 0 for y > 0. Then

. . . . s —1)!
yIEEO ys+1(71)sw‘9(*)(y) = 3y1irr;oy + {(*1) ) (y) — ((;_1_933}

+(=1)**! Sl;rglo yH1aE (y) — sl > 0. (3.4)

s!

Using the asymptotic (1.8), we have (—1)*t! lim y*+1()(y) = =~ and by using the asymptotic
S§—00
(1.3), we have

lim y*+! (_1)s+1w(5)(y) _ (s —1)! } (9+ 2)

y—00 (y+06)°
From (3), we conclude that 3 s! § > 0 and then 6 > 0. Since ui is strictly decreasing function on
(0,00) for s =1,2,... and then § = 0 is the sharpest in (3.3). O

Remark 3.2. Letting s = 1, and § = 0 in (3.3), we get

3(--vw) + 5 <FW) (35)
Since To(y) < 0 on y > 1, we get that

3(1/y = ') +1/9* > ;71
which implies that the lower of (3.5) refines the lower of (1.13) for all y > 1.

In the following Proposition, we will refine the inequality (3.2)
Proposition 3.1. Fory > 11/5, we have

1 1
mm<30mm—w@0—§—1@@ (3.6)
Proof. Let Ay (ln y)— ) +i+ 10y5 and then A'(y) = () + 3¢/ (y) — % — yiz — #
By using the relatlon (1 2) and (1.7), we get
—2f(y—+% 11
Ay +2) - N(y) = o—%) <0, y=—

yo(1+y)2(2+y)°
where

390625 f (y) = 319140802 + 4885742080y + 930899140032 + 7990092125y + 3852587500y

F1117693750y° + 194625000y° + 18828125y7 + 7812504 > 0, y >0
then A'(y +2) — A'(y) < 0 for y > & with lim A’(y) = 0 and we use Corollary 2.1 to get A'(y) > 0
y—00

for y > L. Then A(y) is increasing for y > & with yli)n;o A(y) = 0and hence A(y) < Ofory > . O

Remark 3.3. The upper bound of (3.6) improves its counterparts of (3.2) for y > 2.2.
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4. SOME SHARP BOUNDS FOR THE NIELSON’S S—FUNCTION
In the following Proposition, we introduce some sharp bounds for S(y).

Proposition 4.1. Fory > %, the function

x(y) = ew(er%)*éB(y)vLﬁ —y (4.1)
is strictly decreasing and convex, and as consequence
1 x 1 1 1
37 6 (It e 7B = ) =0+ 1/2)) < 50) < 5 - 6 nly+0) v+ 1/2) . vz
(4.2)
where the constants 0 and es 7"z — % ~ 0.0105083 are the best possible.
Proof.
1 1 1)1 1
) = (W5 +1/2) =GB W) — g5 ) VR8P0
6 12y
and

L = (ws D - L — LN s by - g Los
ew(y+1/2)éﬂ(y)+1§yX(y)_<¢(y+2) W) TVrg) g W g S W)

Now, by using (1.7), we get

=’ (y+1/2)
3y?(y + 1)2(2 + y)2(1 + 2y)2(3 + 2y)?

+ 9176y 4 9024y° 4 5088y° 4 1536y + 192y8)

Qi (y+2)— ly)

(18 + 150y + 145142 + 5216y°

B/(y) 2 3
+ 18 + 150y + 1451y% + 5216
18y2(y+1)2(2+y)2(1+2y)2(3+2y)2( 4 y y
+ 9176y 4 9024y° + 5088y° + 153637 + 192y8>
1
+ 972 + 23976y + 320382y>
36y (y + D22 + y) (1 + 29)%(3 + 2y)* ( 4 4
4+ 2430162y° + 13132626y* + 52868532y° + 156888155y° + 343105960y "
+ 5588683041 + 686121152y° + 640000400y'° 4 454398592yt + 244100672y'2
4+ 97624320y" 4 28179456y + 5548032y 4 66662416 + 36864y17>
Also, let
. YAy + 1@+ )21+ 2026+ 20)° (U(y +2) - ()
2(y) = 18 + 150y + 1451y2 4 5216y3 + 9176y + 9024y> + 5088y6 + 1536y7 + 19238’
then
A(y—3)
C(y) D(y)
Doy +2) — Wo(y) =
20+ 2) = 0) = Rt TR T PG + g A+ 121 + 2706 + 29206 + 2927 T 29
with
C(y) = 1054826 4 2945730y + 3572267y* + 2457888y> + 1049816y* + 285120y° + 48096y°

+ 4608y 4 1921°,

D(y) = 18+ 150y + 1451y2 + 5216y° + 9176y* + 9024y° + 5088y° + 153637 + 192y/%,
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and

8 A(y) 593509809240204966 + 17929659735419721030y + 194244817332074601681y>
1175888223519972411240y° + 4708482753046300072749y*
13612042463141357093790%° + 299581478518488575009861°
51989396109982858532240y 7 + 72917363584170434755612y/°
84150002031089589265200y° + 80978394666244288508208y°
65629513144336823425920y* " + 4512785579605168618086472
26466688547015594384000y ' 4 13285793637587407254400y 4
5719287968655745474560y15 + 2112239570722290238464116
668522306559352565760y 7 4+ 180837257603564720128y8
41619950636315033600y° + 80958551033539870721%°
1318551079216250880y%! + 177482786245410816y%>
193894368097075204% 4 1675217716641792y%4
110113865072640y%5 + 5172133625856y + 1545810739207 4 22083010563%5.

Using A(y) > 0,C(y) > 0,D(y) > 0 for all y > 0, then we obtain Qa(y +2) — Qa(y) > 0 for all y > 1.
Using the asymptotic expansions (1.3) and (1.8) and their derivatives, we have

T e e s

/3% 2)

1
_ lim |: 18+150y+1451y2+5216y3+9176y%+9024y5+5088y0+1536y7+192y8
36y%(y +1)2(2 +y)?(3 + 2y)?

X (324—%11880y—%124416y24—644244y34—2043301y4+—4367224y5%—6562372y6

Y—00

+ 7041384y7475395392y84—2916048y9471081536y1047261120y11#736864y12472304y13)
+ O(y_4)} =0
s0, Q2(y) < 0 for all y > 1. Now, Qy(y +2) — Qi(y) < 0 and

1+ 8y + 24y? + 128y> + 496y* + 768y + 960y°
144y5(1 4 2y)*

lim Q;(y) = lim [

Yy—0o0 Y—00

+ O(y75)} =0

so, Q1(y) > 0 for all y > 2. Then x”(y) > 0 for all y > 1 and hence the function x(y) is convex for
y € [, 00). Also,

{7(1%710y4#48y247144y3#7192y447960y54*2112y64kll52y7)

1. 12 — 1.
Jim X (y) = lim, 576y5(1 + 2y)*

+ O(y73)} =0

and thus x'(y) < 0 all y > %. Hence the function x(y) is decreasing on [§,00) with x(3) =

1_._ =
e 7712 —%and

lim x(y) = lim

Y—00 Y—>0o0

1 (y+3) 1 1 -3 )
- + + s+ 0 =0
<24(y + %) 2442 24(y + %)2 9672 ™)

Then, for all y > %, we have

0 < eP(ut3)-88W+y _ y < A _

)

N | =

where the constants 0 and es 7~z — % are the best possible. O
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Remark 4.1. (a) Since T1(y) < 0 on (0,00), we get that

—6( () — vl +1/2) + 50 <p(6y+ O~y =), y>o

which implies that the upper of (4.2) refines the upper of (1.17) for all y > 3.

(b) Since Ya(y) < 0 on [3,00), we get that
~6(n(s) — 0y +1/2)) + - <3(Ine) ~ v)

which implies that the upper of (4.2) refines the upper of (3.2) at # =0 for all y > %

(c) Since T3(y) < 0 on [8,00), we get that
~6(In(y) — vy +1/2)) + i <3(In(y) — v(w)) - 5 - @

which implies that the upper of (4.2) refines the upper of (3.6) for all y > 8.

(d) Since T4(y) < 0 on [3,00), we get that

6(1 1)>+1<1+—1
n(y z il

2 2y 2y 4y?’
which implies that the upper of (4.2) refines the upper of (1.15) for all y > %

(e) Since T5(y)<00n< %,oo),we get that
—y/2+1 . 1-4/2
_\/g 2y(y+ 1)

which implies that the upper of (4.2) refines the upper of (1.11) for all y > \/g

~6(In(y) - vy +1/2)) +i <1/2In

(f) Since T1p(y) < 0 on [,,oo) , we get that

1 1 1
—6(1 _ - =
(n(y) w(y+2))+2y ”
which implies that the upper of (4.2) refines the upper of (1.14) for all y > %

(g) Since Y11(y) < 0 on [%, 00) , we get that

—6<ln (y+e%—7—% - %) —¢(y+ ;)) + % > i —In(2),

which implies that the lower of (4.2) refines the lower of (1.14) for all y > 2.
In the following Proposition, we will refine the inequality (4.2).

Proposition 4.2. Fory > 2 1, we have

1 1 13
R T
2y 160y

By) < =6(In(y) = vly + 5
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Proof. Let S(y) = B(y) + 6<ln(y) — Yy + %)) — % + 16103y5 and then S'(y) = B'(y) — 69’ (y + %) +
13

2 + ﬁ — 32,5+ By using the relation (1.2) and (1.7), we get

, o —v(y—19)
S+ =50 = g T e ryra e e 0 Y

=] ©

where
524288 v(y) = 700649248491 + 140729760216552y + 46’1141774060608y2 + 689388303437184y3

+617757770387200y" + 368300208001024y° + 153333113815040y° + 45480722759680y"

+9610982916096y° + 1418145038336y + 139179589632y'° + 8178892800y 4 218103808y 2
then S’(y+2) —S'(y) <0 for y > 2 with li_>m S’(y) = 0 and we use Corollary 2.1 to get S’'(y) > 0
y o0
for y > 9. Then S(y) is increasing for y > 2 with li_>m S(y) = 0 and hence S(y) <0 fory > 2. O
Yy—>00

Remark 4.2. The upper of (4.3) refines the upper of (4.2) for all y > §.

In the following, we will introduce an inequality containing $’(y) which will refine (3.5):

1

=, we have

6(1//(11 +1/2) - 1/@/) -

Proposition 4.3. Fory >

I
52 < 0'0) (4.4)

Proof. Let F(y) = —f'(y) + 69’ (y + %) - 2 - ﬁ By using the relation (1.2) and (1.7), we get

_ u(y—3)
o+ =FW) = s pa e s oG rae - > =1

where
625u(y) = 4117 4 118140y + 236425y 4 156000y° 4 32500y* >0, y >0

then F(y +2) — F(y) > 0 for y > 1 with 1i_>m F(y) = 0 and we use Corollary 2.1, we get F(y) <0
Yy—r00
for y > % O

Remark 4.3. (a) Since Y| (y) > 0 on (0,00), we get that

60/ +1/2)=1/y) = gz > o (Vlw+ ) - ——

which implies that the lower of (4.4) refines the lower of (1.18) for all y >

), y>o
1

g.

(b) Using Since T4(y) > 0 on (0,00), we get that

6(v/(y+1/2) ~1/y) - % >3(1/y— ') + L
>

27

<

which implies that the lower of (4.4) refines the lower of (3.5) for all y > 1

5. CONCLUSION

The primary findings of this paper are presented in Corollaries 3.1 and 3.2, and Proposition 4.1.
Specifically, the author examined two approximations for Nielsen’s Beta function. As a result, the
new inequalities for (y) refine several recent results. These findings also provide sharper bounds
for various alternating series, generalized hypergeometric functions, and related functions.
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