
***Turkish Journal of
INEQUALITIES***

Available online at www.tjinequality.com

**SOME BI-UNIVALENT FUNCTION SUBFAMILIES ESTABLISHED BY
IMAGINARY ERROR FUNCTIONS LINKED TO BERNOULLI
POLYNOMIALS**

SONDEKOLA RUDRA SWAMY¹, PANKAJ KUMAR¹,
AND NAYAKARAHALLI MANJEGOWDA GEETHALAKSHMI¹

ABSTRACT. Using special functions, many researchers have studied several subfamilies of the bi-univalent function family. This article presents and examines two subfamilies of bi-univalent functions that are governed by Bernoulli polynomials defined by imaginary error functions in the open unit disk. We obtain limits on initial coefficients for functions in the specified subfamilies. The Fekete-Szegö problem is also addressed for the elements of the subfamilies that have been defined. We also present some new and intriguing results.

1. INTRODUCTION

Geometric Function Theory (GFT) is a fruitful branch of mathematics within complex analysis. This sub-branch has been successful in attracting the attention of researchers in recent years. Let $\mathfrak{U} = \{\zeta \in \mathbb{C} : |\zeta| < 1\}$. The family of holomorphic functions ϕ in \mathfrak{U} of the form

$$\phi(\zeta) = \zeta + d_2\zeta^2 + d_3\zeta^3 + \cdots = \zeta + \sum_{j=2}^{\infty} d_j\zeta^j, \quad \zeta \in \mathfrak{U}, \quad (1.1)$$

is identified by \mathcal{A} . Let \mathcal{S} be the subset of \mathcal{A} defined by $\mathcal{S} = \{\phi \in \mathcal{A} : \phi \text{ is univalent in } \mathfrak{U}\}$. Bieberbach conjectured in [4] that for every function $\phi \in \mathcal{S}$, $|d_j| \leq j$, $j \geq 2$. Many new subfamilies of \mathcal{S} were defined, and several results were established, in order to resolve the Bieberbach conjecture. Branges finally resolved this hypothesis for each $j \geq 2$ in [5] after years of research into its proof. For every function $\phi \in \mathcal{S}$ [21], Fekete-Szegö Functional (FSF) $|d_3 - \xi d_2^2|$, $\xi \in \mathbb{R}$ is another GFT problem. Researchers have published a large number of papers on the above problem for functions that are members of subsets of \mathcal{S} . The bi-univalent function class σ is one of the most notable subclasses of \mathcal{S} . Levin introduced the concept

Key words and phrases. Holomorphic functions, Imaginary error functions, Bi-univalent functions, Bernoulli polynomials.

2010 *Mathematics Subject Classification.* Primary: 30C45. Secondary: 05A15, 11B39.

Received: 25/04/2025 *Accepted:* 15/08/2025.

Cite this article as: S.R. Swamy, P. Kumar, N.M. Geethalakshmi, Some bi-univalent function subfamilies established by imaginary error functions linked to Bernoulli polynomials, Turkish Journal of Inequalities, 9(2) (2025), 11-24.

of σ of bi-univalent functions in [29] and is defined by $\sigma = \{\phi \in \mathcal{A} : \phi \text{ and } \phi^{-1} = \psi \text{ are both univalent in } \mathfrak{U}\}$. The well-known Koebe theorem (see [19]) says that the inverse of $\phi \in \mathcal{S}$ of the form (1.1) is given by

$$\phi^{-1}(w) = w - d_2 w^2 + (2d_2^2 - d_3)w^3 - (5d_2^3 - 5d_2 d_3 + d_4)w^4 + \cdots = \psi(w) \quad (1.2)$$

obeying $\varsigma = \psi(\phi(\varsigma))$, $\varsigma \in \mathfrak{U}$, and $w = \phi(\psi(w))$, $|w| < r_0(\phi)$, $1/4 \leq r_0(\phi)$, $w \in \mathfrak{U}$. Since the functions $\frac{1}{2} \log\left(\frac{1+\varsigma}{1-\varsigma}\right)$, $\frac{\varsigma}{1-\varsigma}$, and $-\log(1-\varsigma)$ are members of the σ family, the class σ is not a null set. $\frac{2\varsigma-\varsigma^2}{2}$, $\frac{\varsigma}{1-\varsigma^2}$, and the Koebe function $\frac{\varsigma}{(1-\varsigma)^2}$, despite being in \mathcal{S} , are not elements of σ . For a brief analysis and to learn about some of the traits of the σ family, see [6, 7, 32, 43]. Research on the family of bi-univalent functions have recently gained momentum thanks to Srivastava and his co-authors for an article [38]. Since this article revived the topic, numerous researchers have looked into a number of fascinating special σ families; see [11, 15, 16, 22, 23, 27, 44] as well as the citation provided in these articles.

Certain polynomials such as Bernoulli, Fibonacci, Gegenbauer, Faber, Horadam, Lucas-Balancing, Lucas-Lehmer, (m, n) -Lucas, and their extensions are essential in a wide range of disciplines, including combinatorics, computer science, engineering, number theory, numerical analysis, and physics. Because of their extensive use in the applied sciences, some extensions of these polynomials have been described in the literature. Recently, researchers have concentrated on a particular class of polynomials known as Bernoulli polynomials. The ability of this family of polynomials to capture complex behavior within a finite set of terms makes them an intriguing basis set for function approximation, especially when working with fractional derivatives, where the derivative is taken to a non-integer power. By applying the concepts of integration and differentiation to non-integer orders, the area fractional calculus makes it possible to model systems with memory effects or anomalous diffusion more precisely. The Bernoulli polynomials have been applied in new ways to numerically resolve Lane-Emden type fractional-order differential equations, a new approximation method based on orthonormal polynomials has been created in [36], whereas, equations involving Fredholm fractional integro-differentials and right-sided Caputo derivatives with multi-fractional orders are numerically resolved using Bernoulli polynomials in Loh and Phang [30].

The Bernoulli polynomials $B_j(x)$, $x \in \mathbb{R}$, and j is non-negative integer, are frequently specified (see, [31]) using the generating function:

$$\mathfrak{B}(x, \varsigma) = \frac{\varsigma e^{x\varsigma}}{e^\varsigma - 1} = B_0(x) + B_1(x)\varsigma + B_2(x)\frac{\varsigma^2}{2!} + \cdots. |\varsigma| < 2|\pi|. \quad (1.3)$$

With the following recursion, the Bernoulli polynomials can be easily calculated:

$$\sum_{n=0}^{j-1} \binom{j}{n} B_n(x) = jx^{j-1}, \quad j = 2, 3, 4, \dots,$$

with the initial condition $B_0(x) = 1$. The following are the first few Bernoulli polynomials:

$$B_1(x) = \frac{2x-1}{2}, B_2(x) = x^2 - x + \frac{1}{6}, \dots \quad (1.4)$$

Several scientific domains, such as statistics, probability, computer science, and numerous engineering issues, depend on the error function. Mathematicians have therefore thought about it a great deal. The error function was the subject of several important inequalities and related subjects; for instances, see [12, 13, 20]. The error function

$$\text{erf}(\varsigma) = \frac{2}{\sqrt{\pi}} \int_0^{\varsigma} e^{-y^2} dy = \frac{2}{\sqrt{\pi}} \sum_{\kappa=0}^{\infty} \frac{(-1)^{\kappa} \varsigma^{2\kappa+1}}{(2\kappa+1)\kappa!}, \quad \varsigma \in \mathbb{C}. \quad (1.5)$$

and its approximations are commonly used to forecast events that have a high or low probability of occurring. Using (1.5), Ramachandran et al. [35] examined the normalized regular error function given by

$$\text{nerf}(\varsigma) = \frac{\sqrt{\pi}\varsigma}{2} \text{erf}(\sqrt{\varsigma}) = \varsigma + \sum_{\kappa=2}^{\infty} \frac{(-1)^{\kappa-1} \varsigma^{\kappa}}{(2\kappa-1)(\kappa-1)!}, \quad \varsigma \in \mathbb{C}. \quad (1.6)$$

By writing the integrand e^{-y^2} as a Maclaurins series and integrating term by term, the imaginary error function, represented by ierf , where "i" stands for the imaginary unit. This allows for the inclusion of oscillatory components in solutions, which can be crucial when modeling wave-like phenomena. As explained in ([1, 14]), the Maclaurins series can be obtained as indicated below.

$$\text{ierf}(\varsigma) = \frac{2}{\sqrt{\pi}} \int_0^{\varsigma} e^{-y^2} dy = \frac{2}{\sqrt{\pi}} \sum_{\kappa=0}^{\infty} \frac{\varsigma^{2\kappa+1}}{(2\kappa+1)\kappa!}, \quad \varsigma \in \mathbb{C}. \quad (1.7)$$

Using (1.7), the imaginary error function in the normalized form is represented by nier and is defined by

$$\text{nierf}(\varsigma) = \frac{\sqrt{\pi}\varsigma}{2} \text{ierf}(\sqrt{\varsigma}) = \varsigma + \sum_{\kappa=2}^{\infty} \frac{\varsigma^{\kappa}}{(2\kappa-1)(\kappa-1)!}, \quad \varsigma \in \mathbb{C}. \quad (1.8)$$

and utilizing the convolution product represented by \star , we define

$$I\phi(\varsigma) = (\text{nierf} \star \phi)(\varsigma) = \varsigma + \sum_{\kappa=2}^{\infty} \frac{d_{\kappa}}{(2\kappa-1)(\kappa-1)!} \varsigma^{\kappa}, \quad (1.9)$$

where $\phi \in \mathcal{S}$ is of the form (1.1).

For $\mathfrak{a}_1, \mathfrak{a}_2 \in \mathcal{A}$ holomorphic in \mathfrak{U} , \mathfrak{a}_1 is subordinate to \mathfrak{a}_2 , if there is a Schwarz function $\varphi(\varsigma)$ that is holomorphic in \mathfrak{U} with $\varphi(0) = 0$ and $|\varphi(\varsigma)| < 1$, such that $\mathfrak{a}_1(\varsigma) = \mathfrak{a}_2(\varphi(\varsigma))$, $\varsigma \in \mathfrak{U}$. This is symbolized as

$$\mathfrak{a}_1 \prec \mathfrak{a}_2 \text{ or } \mathfrak{a}_1(\varsigma) \prec \mathfrak{a}_2(\varsigma).$$

Further, if $\mathfrak{a}_2 \in \mathcal{S}$, then

$$\mathfrak{a}_1(\varsigma) \prec \mathfrak{a}_2(\varsigma) \Leftrightarrow \mathfrak{a}_1(0) = \mathfrak{a}_2(0) \quad \text{and} \quad \mathfrak{a}_1(\mathfrak{U}) \subset \mathfrak{a}_2(\mathfrak{U}).$$

Bernoulli polynomials is a family of polynomials with special properties, GFT is a sub-branch of complex analysis that focuses on the geometric properties of regular functions, and the imaginary error function is a particular complex function. These three concepts are related but represent different ideas in mathematics. When combined, they can be used to study complex analytic functions and their geometric behavior, especially in relation to conformal mappings and univalent functions. We may direct readers to [14, 35] for certain

investigations that combine the ideas of GFT and the error function. For some studies that integrate the concepts of GFT and Bernoulli polynomials, we might refer readers to [8, 9, 28]. In [2, 3], intriguing investigations are conducted by fusing the concepts of Bernoulli polynomials, GFT, and the imaginary function.

In recent years, a large number of studies have been carried out on functions that belong to a certain σ subfamily and are governed by known polynomials. For members of σ subfamilies that are linked to special polynomials, many researchers have discovered coefficient estimates and the FSF $|d_3 - \xi d_2^2|$, $\xi \in \mathbb{R}$ (See [10, 17, 18, 24–26, 33, 34, 37, 39–42, 45]).

Using the ideas of Bernoulli polynomials, GFT, and the imaginary function, we identify two Bernoulli polynomials-governed subfamilies of σ : $\mathfrak{W}_\sigma(\beta, \tau, x)$ and $\mathfrak{P}_\sigma(\beta, \tau, x)$. This research is inspired by the work done in [2, 3].

This paper employs the function $\mathfrak{B}(x, \varsigma)$ as in (1.3), $\varsigma \in \mathfrak{U}$, and $\psi(w) = \phi^{-1}(w)$ as in (1.2), $w \in \mathfrak{U}$, unless otherwise noted.

Definition 1.1. Let $0 \leq \beta \leq 1$, and $\tau \geq 1$. If $\phi \in \sigma$ satisfies

$$\frac{\varsigma((I\phi(\varsigma))')^\tau}{(1 - \beta)\varsigma + \beta(I\phi(\varsigma))} \prec \mathfrak{B}(x, \varsigma), \quad (1.10)$$

and

$$\frac{w((I\psi(w))')^\tau}{(1 - \beta)w + \beta(I\psi(w))} \prec \mathfrak{B}(x, w), \quad (1.11)$$

then we say that $\phi \in \mathfrak{W}_\sigma(\beta, \tau, x)$.

Definition 1.2. Let $0 \leq \beta \leq 1$, and $\tau \geq 1$. If $\phi \in \sigma$ satisfies

$$\frac{[(\varsigma(I\phi(\varsigma))')']^\tau}{1 - \beta + \beta(I\phi(\varsigma))'} \prec \mathfrak{B}(x, \varsigma), \quad (1.12)$$

and

$$\frac{[(w(I\psi(w))')']^\tau}{1 - \beta + \beta(I\psi(w))'} \prec \mathfrak{B}(x, w), \quad (1.13)$$

then we say that $\phi \in \mathfrak{P}_\sigma(\beta, \tau, x)$.

The following is the structure of the article's content. For functions in the families $\mathfrak{W}_\sigma(\beta, \tau, x)$ and $\mathfrak{P}_\sigma(\beta, \tau, x)$, the estimates for $|d_2|$, $|d_3|$, and $|d_3 - \xi d_2^2|$, $\xi \in \mathbb{R}$ are found in Section 2. In Section 3, we highlight relevant instances of our primary findings, which were demonstrated in Section 2. In Section 4, we conclude the study with some observations.

2. PRINCIPAL FINDINGS

For functions in the families $\mathfrak{W}_\sigma(\beta, \tau, x)$ and $\mathfrak{P}_\sigma(\beta, \tau, x)$, Section 2 starts with bounds for $|d_2|$, $|d_3|$, and $|d_3 - \xi d_2^2|$, $\xi \in \mathbb{R}$.

Theorem 2.1. If $\phi \in \sigma$ is a member of $\mathfrak{W}_\sigma(\beta, \tau, x)$, $0 \leq \beta \leq 1, \tau \geq 1$, then

$$|d_2| \leq \frac{3|2x - 1|\sqrt{|2x - 1|}}{\sqrt{|9(\frac{1}{5}(3\tau - \beta) + \frac{2}{9}(2\tau(\tau - 1) + \beta^2 - 2\tau\beta))(2x - 1)^2 - 4(2\tau - \beta)^2(x^2 - x + \frac{1}{6})|}}, \quad (2.1)$$

$$|d_3| \leq \frac{9(2x-1)^2}{4(2\tau-\beta)^2} + \frac{5|2x-1|}{3\tau-\beta}, \quad (2.2)$$

and for $\xi \in \mathbb{R}$

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{5|2x-1|}{3\tau-\beta} & ; |1-\xi| \leq \Upsilon \\ \frac{9|2x-1|^3|1-\xi|}{|9(\frac{1}{5}(3\tau-\beta)+\frac{2}{9}(2\tau(\tau-1)+\beta^2-2\tau\beta))(2x-1)^2-4(2\tau-\beta)^2(x^2-x+\frac{1}{6})|} & ; |1-\xi| \geq \Upsilon, \end{cases} \quad (2.3)$$

where

$$\Upsilon = \frac{5}{9} \left| \frac{9(\frac{1}{5}(3\tau-\beta)+\frac{2}{9}(2\tau(\tau-1)+\beta^2-2\tau\beta))(2x-1)^2-4(2\tau-\beta)^2(x^2-x+\frac{1}{6})}{(3\tau-\beta)(2x-1)^2} \right|. \quad (2.4)$$

Proof. Let $\phi \in \mathfrak{W}_\sigma(\beta, \tau, x)$. Then, from subordinations (1.10) and (1.11), we can write

$$\frac{\varsigma((I\phi(\varsigma))')^\tau}{(1-\beta)\varsigma + \beta(I\phi(\varsigma))} = \mathfrak{B}(x, \mathfrak{l}(\varsigma)), \quad (2.5)$$

and

$$\frac{w((I\psi(w))')^\tau}{(1-\beta)w + \beta(I\psi(w))} = \mathfrak{B}(x, \mathfrak{m}(w)), \quad (2.6)$$

where Schwarz functions $\mathfrak{l}(\varsigma) = \mathfrak{l}_1\varsigma + \mathfrak{l}_2\varsigma^2 + \dots$ and $\mathfrak{m}(w) = \mathfrak{m}_1w + \mathfrak{m}_2w^2 + \dots$ satisfy

$$|\mathfrak{l}_j| \leq 1, \text{ and } |\mathfrak{m}_j| \leq 1 (j \in \mathbb{N}). \quad (2.7)$$

(See [19]). The following are the representation of equations (2.5) and (2.6) using some fundamental mathematical methods:

$$\begin{aligned} \frac{\varsigma((I\phi(\varsigma))')^\tau}{(1-\beta)\varsigma + \beta(I\phi(\varsigma))} &= 1 + \frac{1}{3}(2\tau-\beta)d_2\varsigma \\ &+ \left(\frac{1}{10}(3\tau-\beta)d_3 + \frac{1}{9}(2\tau(\tau-1)-\beta(2\tau-\beta))d_2^2 \right) \varsigma^2 + \dots, \end{aligned} \quad (2.8)$$

$$\mathfrak{B}(x, \mathfrak{l}(\varsigma)) = 1 + B_1(x)\mathfrak{l}_1\varsigma + \left(B_1(x)\mathfrak{l}_2 + \frac{B_2(x)}{2!}\mathfrak{l}_1^2 \right) \varsigma^2 + \dots, \quad (2.9)$$

and

$$\begin{aligned} \frac{w((I\psi(w))')^\tau}{(1-\beta)w + \beta(I\psi(w))} &= 1 - \frac{1}{3}(2\tau-\beta)d_2w + \\ &\left(\frac{1}{10}(3\tau-\beta)(2d_2^2 - d_3) + \frac{1}{9}(2\tau(\tau-1)-\varrho(2\tau-\beta))d_2^2 \right) w^2 + \dots, \end{aligned} \quad (2.10)$$

$$\mathfrak{B}(x, \mathfrak{m}(w)) = 1 + B_1(x)\mathfrak{m}_1w + \left(B_1(x)\mathfrak{m}_2 + \frac{B_2(x)}{2!}\mathfrak{m}_1^2 \right) w^2 + \dots. \quad (2.11)$$

Due to (2.5), we compare terms of the same degree in (2.8) and (2.9) and arrive at the following relations:

$$\frac{1}{3}(2\tau-\beta)d_2 = B_1(x)\mathfrak{l}_1, \quad (2.12)$$

and

$$\frac{1}{10}(3\tau-\beta)d_3 + \frac{1}{9}(2\tau(\tau-1)-\beta(2\tau-\beta))d_2^2 = B_1(x)\mathfrak{l}_2 + \frac{B_2(x)}{2!}\mathfrak{l}_1^2. \quad (2.13)$$

Similar to this, we compare terms of the same degree in (2.10) and (2.11) due to equality (2.6), and arrive at the following expressions:

$$-\frac{1}{3}(2\tau - \beta)d_2 = B_1(x)\mathfrak{m}_1, \quad (2.14)$$

and

$$\frac{1}{10}(3\tau - \beta)(2d_2^2 - d_3) + \frac{1}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))d_2^2 = B_1(x)\mathfrak{m}_2 + \frac{B_2(x)}{2!}\mathfrak{m}_1^2. \quad (2.15)$$

From equations (2.25) and (2.14), we get

$$\mathfrak{l}_1 = -\mathfrak{m}_1, \quad (2.16)$$

and

$$\frac{2}{9}(2\tau - \beta)^2 d_2^2 = (\mathfrak{l}_1^2 + \mathfrak{m}_1^2)B_1^2(x). \quad (2.17)$$

Addition of equations (2.13) and (2.15) yields

$$\left(\frac{1}{5}(3\tau - \beta) + \frac{2}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))\right)d_2^2 = B_1(x)(\mathfrak{l}_2 + \mathfrak{m}_2) + \frac{B_2(x)}{2}(\mathfrak{l}_1^2 + \mathfrak{m}_1^2). \quad (2.18)$$

Replacing $\mathfrak{l}_1^2 + \mathfrak{m}_1^2$ from equation (2.17) into equation (2.18), we get:

$$d_2^2 = \frac{9B_1^3(x)(\mathfrak{l}_2 + \mathfrak{m}_2)}{9\left(\frac{1}{5}(3\tau - \beta) + \frac{2}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))\right)B_1^2(x) - (2\tau - \beta)^2B_2(x)}. \quad (2.19)$$

The inequality (2.1) is obtained by using equation (1.4) for $B_1(x), B_2(x)$ and applying equation (2.7) to $\mathfrak{l}_2, \mathfrak{m}_2$.

The bound on $|d_3|$ is obtained by subtracting (2.15) from (2.13):

$$d_3 = d_2^2 + \frac{5B_1(x)(\mathfrak{l}_2 - \mathfrak{m}_2)}{3\tau - \beta}. \quad (2.20)$$

When d_2^2 is substituted from equation (2.17) into equation (2.20), we obtain

$$d_3 = \frac{9B_1^2(x)(\mathfrak{l}_1^2 + \mathfrak{m}_2^2)}{2(2\tau - \beta)^2} + \frac{5B_1(x)(\mathfrak{l}_2 - \mathfrak{m}_2)}{3\tau - \beta}. \quad (2.21)$$

Using (1.4) and (2.7), we derive (2.2) from (2.21). Lastly, we use the value of d_2^2 from (2.19) in (2.20) to compute the bound on $|d_3 - \xi d_2^2|$. As a result, we have

$$|d_3 - \xi d_2^2| = |B_1(x)| \left| \left(\frac{5}{3\tau - \beta} + \mathcal{V}_2(\xi, x) \right) \mathfrak{l}_2 - \left(\frac{5}{3\tau - \beta} - \mathcal{V}_2(\xi, x) \right) \mathfrak{m}_2 \right|,$$

where

$$\mathcal{V}_2(\xi, x) = \frac{9(1 - \xi)B_1^2(x)}{9\left(\frac{1}{5}(3\tau - \beta) + \frac{2}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))\right)B_1^2(x) - (2\tau - \beta)^2B_2(x)}.$$

Clearly

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{10|B_1(x)|}{3\tau - \beta} & ; |\mathcal{V}_2(\xi, x)| \leq \frac{5}{3\tau - \beta} \\ 2|B_1(x)||\mathcal{V}_2(\xi, x)| & ; |\mathcal{V}_2(\xi, x)| \geq \frac{5}{3\tau - \beta}. \end{cases} \quad (2.22)$$

From (2.22), we derive (2.3), where Υ is identical to that in (2.4). \square

By taking $\xi = 1$ in the above theorem, we get the below inequality.

Corollary 2.1. *If $\phi \in \sigma$ is a member of $\mathfrak{W}_\sigma(\beta, \tau, x)$, then $|d_3 - d_2^2| \leq \frac{5|2x-1|}{3\tau-\beta}$.*

Theorem 2.2. *If $\phi \in \sigma$ is a member of $\mathfrak{P}_\sigma(\beta, \tau, x)$, $0 \leq \beta \leq 1, \tau \geq 1$, then*

$$|d_2| \leq \frac{3|2x-1|\sqrt{|2x-1|}}{\sqrt{|9(\frac{3}{5}(3\tau-\beta) + \frac{8}{9}(2\tau(\tau-1) - \beta(2\tau-\beta)))(2x-1)^2 - 16(2\tau-\beta)^2(x^2-x+\frac{1}{6})|}}, \quad (2.23)$$

$$|d_3| \leq \frac{9(2x-1)^2}{16(2\tau-\beta)^2} + \frac{5|2x-1|}{3(3\tau-\beta)}, \quad (2.24)$$

and for $\xi \in \mathbb{R}$

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{5|2x-1|}{3(3\tau-\beta)} & ; |1-\xi| \leq \mathfrak{T} \\ \frac{9|2x-1|^3|1-\xi|}{|9(\frac{3}{5}(3\tau-\beta) + \frac{8}{9}(2\tau(\tau-1) - \beta(2\tau-\beta)))(2x-1)^2 - 16(2\tau-\beta)^2(x^2-x+\frac{1}{6})|} & ; |1-\xi| \geq \mathfrak{T}, \end{cases} \quad (2.25)$$

where

$$\mathfrak{T} = \frac{5}{27} \left| \frac{9(\frac{3}{5}(3\tau-\beta) + \frac{8}{9}(2\tau(\tau-1) - \beta(2\tau-\beta)))(2x-1)^2 - 16(2\tau-\beta)^2(x^2-x+\frac{1}{6})}{(3\tau-\beta)(2x-1)^2} \right|. \quad (2.26)$$

Proof. Let $\phi \in \mathfrak{W}_\sigma(\beta, \tau, x)$. Then, from subordinations (1.10) and (1.11), we can write

$$\frac{[(\zeta(I\phi(\zeta))')']^\tau}{1 - \beta + \beta(I\phi(\zeta))'} = \mathfrak{B}(x, \mathfrak{l}(\zeta)), \quad (2.27)$$

and

$$\frac{[(w(I\psi(w))')']^\tau}{1 - \beta + \beta(I\psi(w))'} = \mathfrak{B}(x, \mathfrak{m}(w)), \quad (2.28)$$

where Schwarz functions $\mathfrak{l}(\zeta) = \sum_{j=1}^{\infty} \mathfrak{l}_j \zeta^j$, and $\mathfrak{m}(w) = \sum_{j=1}^{\infty} \mathfrak{m}_j w^j$, $\zeta, w \in \mathfrak{U}$ satisfy the property (2.7) (See[19]). Equation (2.27) can be written as follows by employing a few basic mathematical techniques:

$$\begin{aligned} \frac{[(\zeta(I\phi(\zeta))')']^\tau}{1 - \beta + \beta(I\phi(\zeta))'} &= 1 + \frac{2}{3}(2\tau - \beta)d_2\zeta \\ &+ \left(\frac{3}{10}(3\tau - \beta)d_3 + \frac{4}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))d_2^2 \right) \zeta^2 + \dots, \end{aligned} \quad (2.29)$$

$$\mathfrak{B}(x, \mathfrak{l}(\zeta)) = 1 + B_1(x)\mathfrak{l}_1\zeta + \left(B_1(x)\mathfrak{l}_2 + \frac{B_2(x)}{2!}\mathfrak{l}_1^2 \right) \zeta^2 + \dots, \quad (2.30)$$

and equation (2.28) can be written as follows by employing a few basic mathematical techniques:

$$\begin{aligned} \frac{[(w(I\psi(w))')']^\tau}{1 - \beta + \beta(I\psi(w))'} &= 1 - \frac{2}{3}(2\tau - \beta)d_2w + \\ &\left(\frac{3}{10}(3\tau - \beta)(2d_2^2 - d_3) + \frac{4}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))d_2^2 \right) w^2 + \dots, \end{aligned} \quad (2.31)$$

$$\mathfrak{B}(x, \mathfrak{m}(w)) = 1 + B_1(x)\mathfrak{m}_1w + \left(B_1(x)\mathfrak{m}_2 + \frac{B_2(x)}{2!}\mathfrak{m}_1^2 \right) w^2 + \dots. \quad (2.32)$$

Due to equation (2.27), we arrive at the following result by comparing the terms in equations (2.29) and (2.30):

$$\frac{2}{3}(2\tau - \beta)d_2 = B_1(x)\mathfrak{l}_1, \quad (2.33)$$

and

$$\frac{3}{10}(3\tau - \beta)d_3 + \frac{4}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))d_2^2 = B_1(x)\mathfrak{l}_2 + \frac{B_2(x)}{2!}\mathfrak{l}_1^2. \quad (2.34)$$

Similarly, due to equation (2.28), we arrive at the following result by comparing the terms in equations (2.31) and (2.32):

$$-\frac{2}{3}(2\tau - \beta)d_2 = B_1(x)\mathfrak{m}_1, \quad (2.35)$$

and

$$\frac{3}{10}(3\tau - \beta)(2d_2^2 - d_3) + \frac{4}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))d_2^2 = B_1(x)\mathfrak{m}_2 + \frac{B_2(x)}{2!}\mathfrak{m}_1^2. \quad (2.36)$$

From (2.33) and (2.35), we get

$$\mathfrak{l}_1 = -\mathfrak{m}_1, \quad (2.37)$$

and

$$\frac{8}{9}(2\tau - \beta)^2 d_2^2 = (\mathfrak{l}_1^2 + \mathfrak{m}_1^2)B_1^2(x). \quad (2.38)$$

Addition of equations (2.34) and (2.36) yields

$$\left(\frac{3}{5}(3\tau - \beta) + \frac{8}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))\right)d_2^2 = B_1(x)(\mathfrak{l}_2 + \mathfrak{m}_2) + \frac{B_2(x)}{2}(\mathfrak{l}_1^2 + \mathfrak{m}_1^2). \quad (2.39)$$

Replacing $\mathfrak{l}_1^2 + \mathfrak{m}_1^2$ from equation (2.38) into equation (2.39), we get:

$$d_2^2 = \frac{9B_1^3(x)(\mathfrak{l}_2 + \mathfrak{m}_2)}{9\left(\frac{3}{5}(3\tau - \beta) + \frac{8}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))\right)B_1^2(x) - 4(2\tau - \beta)^2B_2(x)}. \quad (2.40)$$

Applying equation (2.7) to $\mathfrak{l}_2, \mathfrak{m}_2$, and using equation (1.4) for $B_1(x), B_2(x)$ yields (2.23).

The bound on $|d_3|$ is obtained by subtracting (2.36) from (2.34):

$$d_3 = d_2^2 + \frac{5B_1(x)(\mathfrak{l}_2 - \mathfrak{m}_2)}{3(3\tau - \beta)}. \quad (2.41)$$

If we replace d_2^2 using equation (2.38) into equation (2.41), we obtain:

$$d_3 = \frac{9B_1^2(x)(\mathfrak{l}_1^2 + \mathfrak{m}_1^2)}{8(2\tau - \beta)^2} + \frac{5B_1(x)(\mathfrak{l}_2 - \mathfrak{m}_2)}{3(3\tau - \beta)}. \quad (2.42)$$

We deduce equation (2.24) from equation (2.42) by applying equations (1.4) and (2.7). Finally, we compute the bound on $|d_3 - \xi d_2^2|$ using the value of d_2^2 from (2.40) in (2.41). Consequently, we have

$$|d_3 - \xi d_2^2| = |B_1(x)| \left| \left(\frac{5}{3(3\tau - \beta)} + \mathcal{V}_2(\xi, x) \right) \mathfrak{l}_2 - \left(\frac{5}{3(3\tau - \beta)} - \mathcal{V}_2(\xi, x) \right) \mathfrak{m}_2 \right|,$$

where

$$\mathcal{V}_2(\xi, x) = \frac{9(1 - \xi)B_1^2(x)}{9\left(\frac{3}{10}(3\tau - \beta) + \frac{4}{9}(2\tau(\tau - 1) - \beta(2\tau - \beta))\right)B_1^2(x) - 4(2\tau - \beta)^2B_2(x)}.$$

Clearly

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{10|B_1(x)|}{3(3\tau-\beta)} & ; |\mathcal{V}_2(\xi, x)| \leq \frac{5}{3(3\tau-\beta)} \\ 2|B_1(x)||\mathcal{V}_2(\xi, x)| & ; |\mathcal{V}_2(\xi, x)| \geq \frac{5}{3(3\tau-\beta)}. \end{cases} \quad (2.43)$$

We derive (2.25) from (2.43), with Υ is the same as in (2.26). \square

By taking $\xi = 1$ in the above theorem, we get the below inequality.

Corollary 2.2. *If $\phi \in \sigma$ is a member of $\mathfrak{P}_\sigma(\beta, \tau, x)$, then $|d_3 - d_2^2| \leq \frac{5|2x-1|}{3(3\tau-\beta)}$.*

3. SPECIFIC INSTANCES

We derive the following instances through the specialization of the parameters β , and τ in $\mathfrak{W}_\sigma(\beta, \tau, x)$.

Example 3.1. Letting $\tau = 1$ in $\mathfrak{W}_\sigma(\beta, \tau, x)$, we get $\mathfrak{K}_\sigma(\beta, x) \equiv \mathfrak{W}_\sigma(\beta, 1, x)$ a subfamily of elements $\phi \in \sigma$ satisfying

$$\frac{\varsigma(I\phi(\varsigma))'}{(1-\beta)\varsigma + \beta I\phi(\varsigma)} \prec \mathfrak{B}(x, \varsigma), \text{ and } \frac{w(I\psi(w))'}{(1-\beta)w + \beta I\psi(w)} \prec \mathfrak{B}(x, w),$$

where $0 \leq \beta \leq 1$.

According to Theorem 2.1, the following result holds when $\tau = 1$:

Corollary 3.1. *If $\phi \in \sigma$ is an element of $\mathfrak{K}_\sigma(\beta, x)$, $0 \leq \beta \leq 1$, then*

$$|d_2| \leq \frac{3|2x-1|\sqrt{|2x-1|}}{\sqrt{|9(\frac{1}{5}(3-\beta) - \frac{2\beta}{9}(2-\beta))(2x-1)^2 - 4(2-\beta)^2(x^2-x+\frac{1}{6})|}},$$

$$|d_3| \leq \frac{9(2x-1)^2}{4(2-\beta)^2} + \frac{5|2x-1|}{3-\beta},$$

and for $\xi \in \mathbb{R}$

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{5|2x-1|}{3-\beta} & ; |1-\xi| \leq \Upsilon_1 \\ \frac{9|2x-1|^3|1-\xi|}{|9(\frac{1}{5}(3-\beta) - \frac{2\beta}{9}(2-\beta))(2x-1)^2 - 4(2-\beta)^2(x^2-x+\frac{1}{6})|} & ; |1-\xi| \geq \Upsilon_1, \end{cases}$$

where

$$\Upsilon_1 = \frac{5}{9} \left| \frac{9(\frac{1}{5}(3-\beta) + \frac{2\beta}{9}(2-\beta))(2x-1)^2 - 4(2-\beta)^2(x^2-x+\frac{1}{6})}{(3-\beta)(2x-1)^2} \right|.$$

Example 3.2. Letting $\beta = 1$ in $\mathfrak{W}_\sigma(\beta, \tau, x)$, we get $\mathfrak{M}_\sigma(\tau, x) \equiv \mathfrak{W}_\sigma(1, \tau, x)$ a subclass of functions $\phi \in \sigma$ satisfying

$$\frac{\varsigma((I\phi(\varsigma))')^\tau}{I\phi(\varsigma)} \prec \mathfrak{B}(x, \varsigma), \text{ and } \frac{w((I\psi(w))')^\tau}{I\psi(w)} \prec \mathfrak{B}(x, w),$$

where $\tau \geq 1$.

The following is the outcome of Theorem 2.1 when $\beta = 1$:

Corollary 3.2. *If $\phi \in \sigma$ is an element of $\mathfrak{M}_\sigma(\tau, x)$, $\tau \geq 1$, then*

$$|d_2| \leq \frac{3|2x-1|\sqrt{|2x-1|}}{\sqrt{|9(\frac{1}{5}(3\tau-1) + \frac{2}{9}(2\tau^2-4\tau+1)(2x-1)^2 - 4(2\tau-1)^2(x^2-x+\frac{1}{6})|}},$$

$$|d_3| \leq \frac{9(2x-1)^2}{4(2\tau-1)^2} + \frac{5|2x-1|}{3\tau-1},$$

and for $\xi \in \mathbb{R}$

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{5|2x-1|}{3\tau-1} & ; |1-\xi| \leq \Upsilon_2 \\ \frac{9|2x-1|^3|1-\xi|}{|9(\frac{1}{5}(3\tau-1) + \frac{2}{9}(2\tau^2-4\tau+1))(2x-1)^2 - 4(2\tau-1)^2(x^2-x+\frac{1}{6})|} & ; |1-\xi| \geq \Upsilon_2, \end{cases}$$

where

$$\Upsilon_2 = \frac{5}{9} \left| \frac{9(\frac{1}{5}(3\tau-1) + \frac{2}{9}(2\tau^2-4\tau+1))(2x-1)^2 - 4(2\tau-1)^2(x^2-x+\frac{1}{6})}{(3\tau-1)(2x-1)^2} \right|.$$

Example 3.3. Letting $\beta = 0$ in $\mathfrak{W}_\sigma(\beta, \tau, x)$, we get a subclass $\mathfrak{Y}_\sigma(\tau, x) \equiv \mathfrak{W}_\sigma(0, \tau, x)$ of functions $\phi \in \sigma$ satisfying

$$((I\phi(\xi))')^\tau \prec \mathfrak{B}(x, \xi), \text{ and } ((I\psi(w))')^\tau \prec \mathfrak{B}(x, w),$$

where $\tau \geq 1$.

The outcome of Theorem 2.1 is as follows when $\beta = 0$:

Corollary 3.3. *If $\phi \in \sigma$ is an element of $\mathfrak{Y}_\sigma(\tau, x)$, $\tau \geq 1$, then*

$$|d_2| \leq \frac{3|2x-1|\sqrt{|2x-1|}}{\sqrt{|\tau(4\tau + \frac{7}{5})(2x-1)^2 - 16\tau^2(x^2-x+\frac{1}{6})|}},$$

$$|d_3| \leq \frac{9(2x-1)^2}{16\tau^2} + \frac{5|2x-1|}{3\tau},$$

and for $\xi \in \mathbb{R}$

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{5|2x-1|}{3\tau} & ; |1-\xi| \leq \Upsilon_3 \\ \frac{9|2x-1|^3|1-\xi|}{|\tau(4\tau + \frac{7}{5})(2x-1)^2 - 16\tau^2(x^2-x+\frac{1}{6})|} & ; |1-\xi| \geq \Upsilon_3, \end{cases}$$

where

$$\Upsilon_3 = \frac{5}{27} \left| \frac{(4\tau + \frac{7}{5})(2x-1)^2 - 16\tau(x^2-x+\frac{1}{6})}{(2x-1)^2} \right|.$$

We derive the following instances by specializing the parameters β and τ in $\mathfrak{P}_\sigma(\beta, \tau, x)$.

Example 3.4. Letting $\tau = 1$ in $\mathfrak{P}_\sigma(\beta, \tau, x)$, we get a family $\mathfrak{Q}_\sigma(\beta, x) \equiv \mathfrak{P}_\sigma(\beta, 1, x)$ of functions $\phi \in \sigma$ satisfying

$$\frac{(\zeta(I\phi(\xi))')'}{1-\beta+\beta(I\phi(\xi))'} \prec \mathfrak{B}(x, \zeta), \text{ and } \frac{(w(I\psi(w))')'}{1-\beta+\beta(I\psi(w))'} \prec \mathfrak{B}(x, w),$$

where $0 \leq \beta \leq 1$.

According to Theorem 2.2, the following result holds when $\tau = 1$:

Corollary 3.4. *If $\phi \in \sigma$ is an member of $\mathfrak{Q}_\sigma(\beta, x)$, $0 \leq \beta \leq 1$, then*

$$|d_2| \leq \frac{3|2x-1|\sqrt{|2x-1|}}{\sqrt{|9(\frac{3}{5}(3-\beta) - \frac{8\beta}{9}(2-\beta))(2x-1)^2 - 16(2-\beta)^2(x^2-x+\frac{1}{6})|}},$$

$$|d_3| \leq \frac{9(2x-1)^2}{16(2-\beta)^2} + \frac{5|2x-1|}{3(3-\beta)},$$

and for $\xi \in \mathbb{R}$

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{5|2x-1|}{3(3-\beta)} & ; |1-\xi| \leq \mathfrak{l}_1 \\ \frac{9|2x-1|^3|1-\xi|}{|9(\frac{3}{5}(3-\beta) - \frac{8\beta}{9}(2-\beta))(2x-1)^2 - 16(2-\beta)^2(x^2-x+\frac{1}{6})|} & ; |1-\xi| \geq \mathfrak{l}_1, \end{cases}$$

where

$$\mathfrak{l}_1 = \frac{5}{27} \left| \frac{9(\frac{3}{5}(3-\beta) + \frac{8\beta}{9}(2-\beta))(2x-1)^2 - 16(2-\beta)^2(x^2-x+\frac{1}{6})}{(3-\beta)(2x-1)^2} \right|.$$

Example 3.5. Let $\beta = 1$ in $\mathfrak{P}_\sigma(\beta, \tau, x)$. Then we get $\mathfrak{R}_\sigma(\tau, x) \equiv \mathfrak{P}_\sigma(1, \tau, x)$ a subclass of members $\phi \in \sigma$ satisfying

$$\frac{[(\zeta(I\phi(\zeta))')']^\tau}{(I\phi(\zeta))'} \prec \mathfrak{B}(x, \zeta), \text{ and } \frac{[(w(I\psi(w))')']^\tau}{(I\psi(w))'} \prec \mathfrak{B}(x, w),$$

where $\tau \geq 1$.

The following is the outcome of Theorem 2.2 when $\beta = 1$:

Corollary 3.5. *If $\phi \in \sigma$ is an element of $\mathfrak{R}_\sigma(\tau, x)$, $\tau \geq 1$, then*

$$|d_2| \leq \frac{3|2x-1|\sqrt{|2x-1|}}{\sqrt{|9(\frac{3}{5}(3\tau-1) + \frac{8}{9}(2\tau^2-4\tau+1))(2x-1)^2 - 16(2\tau-1)^2(x^2-x+\frac{1}{6})|}},$$

$$|d_3| \leq \frac{9(2x-1)^2}{16(2\tau-1)^2} + \frac{5|2x-1|}{3(3\tau-1)},$$

and for $\xi \in \mathbb{R}$

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{5|2x-1|}{3(3\tau-1)} & ; |1-\xi| \leq \mathfrak{l}_2 \\ \frac{9|2x-1|^3|1-\xi|}{|9(\frac{3}{5}(3\tau-1) + \frac{8}{9}(2\tau^2-4\tau+1))(2x-1)^2 - 16(2\tau-1)^2(x^2-x+\frac{1}{6})|} & ; |1-\xi| \geq \mathfrak{l}_2, \end{cases}$$

where

$$\mathfrak{l}_2 = \frac{5}{27} \left| \frac{9(\frac{3}{5}(3\tau-1) + \frac{8}{9}(2\tau^2-4\tau+1))(2x-1)^2 - 16(2\tau-1)^2(x^2-x+\frac{1}{6})}{(3\tau-1)(2x-1)^2} \right|.$$

Example 3.6. Let $\beta = 0$ in $\mathfrak{P}_\sigma(\beta, \tau, x)$. Then we get $\mathfrak{S}_\sigma(\tau, x) \equiv \mathfrak{P}_\sigma(0, \tau, x)$ a subclass of elements $\phi \in \sigma$ satisfying

$$(\zeta(I\phi(\zeta))')^\tau \prec \mathfrak{B}(x, \zeta), \text{ and } (w(I\psi(w))')^\tau \prec \mathfrak{B}(x, w),$$

where $\tau \geq 1$.

The outcome of Theorem 2.2 would be as follows, if $\beta = 0$.

Corollary 3.6. *If $\phi \in \sigma$ is an element of $\mathfrak{S}_\sigma(\tau, x)$, $\tau \geq 1$, then*

$$|d_2| \leq \frac{3|2x-1|\sqrt{|2x-1|}}{\sqrt{|\tau(16\tau + \frac{1}{5})(2x-1)^2 - 64\tau^2(x^2 - x + \frac{1}{6})|}},$$

$$|d_3| \leq \frac{9(2x-1)^2}{64\tau^2} + \frac{5|2x-1|}{9\tau},$$

and for $\xi \in \mathbb{R}$

$$|d_3 - \xi d_2^2| \leq \begin{cases} \frac{5|2x-1|}{9\tau} & ; |1-\xi| \leq \mathfrak{T}_3 \\ \frac{9|2x-1|^3|1-\xi|}{|\tau(16\tau + \frac{1}{5})(2x-1)^2 - 64\tau^2(x^2 - x + \frac{1}{6})|} & ; |1-\xi| \geq \mathfrak{T}_3, \end{cases}$$

where

$$\mathfrak{T}_3 = \frac{5}{81} \left| \frac{(16\tau + \frac{1}{15})(2x-1)^2 - 64\tau(x^2 - x + \frac{1}{6})}{(2x-1)^2} \right|.$$

4. CONCLUSION

In this presentation, we've established two subfamilies of regular and bi-univalent functions linked to Bernoulli polynomials denoted by $\mathfrak{W}_\sigma(\beta, \tau, x)$ and $\mathfrak{P}_\sigma(\beta, \tau, x)$. Maclaurin coefficients $|d_2|$ and $|d_3|$ have been estimated for functions that are members of the defined σ subfamilies. For functions in these subfamilies, We have also ascertained the FSF $|d_3 - \xi d_2^2|$, $\xi \in \mathbb{R}$. As discussed in Section 2, specialized parameters applied to our findings result in interesting outcomes. For readers who are interested, we conclude by pointing out that the defined subfamilies can be examined for Hankel determinant problems of higher order. It is possible to introduce numerous known subfamilies of the σ family that are subordinate to Bernoulli polynomials. When it comes to functions that are part of the new subfamilies of the σ family connected to Bernoulli polynomials, the FSF $|d_3 - \xi d_2^2|$, $\xi \in \mathbb{R}$ and the estimates of the coefficients $|d_2|$, $|d_3|$, and the Hankel determinant problems of higher order can be found.

In essence, you get a powerful mathematical tool for approximating and solving complex problems involving fractional derivatives when you combine the ideas of the imaginary error function, Bernoulli polynomials, and fractional calculus. These concepts are frequently used in modeling phenomena with memory effects or non-integer order dynamics, where the imaginary error function adds a complex component to the solution that enables more nuanced analysis of oscillatory behaviors, and the Bernoulli polynomials provides a basis for function representation.

Also, combining the imaginary error function, Bernoulli polynomials, and q -calculus entails investigating the mathematical characteristics and connections among these seemingly separate ideas. This frequently involves number theory, complex analysis, and a particular type of calculus called q -calculus, in which derivatives are defined using a " q " parameter, producing intriguing extensions of standard calculus results.

Acknowledgements. The authors express their gratitude to the reviewers of this article for their insightful feedback, which helped them refine and enhance the paper's presentation. The authors made necessary changes in response to comments of the reviewers.

REFERENCES

- [1] H. Alzer, *Error function inequalities*, Adv. Comput. Math., **33**(3) (2010), 349–379.
- [2] T. Al-Hawary, B.A. Frasin, A. Amourah and J. Salah, *Subfamilies of bi-Univalent functions defined by imaginary error functions subordinate to Horadam polynomials*, Eur. J. Pure. Appl. Math., **18**(1) (2025), Article Number 5678.
- [3] A. Amourah, B.A. Frasin, J. Salah and F. Yousef, *Subfamilies of bi-univalent functions associated with the imaginary error function and subordinate to Jacobi polynomials*, Symmetry, **17** (2025), 157.
- [4] L. Bieberbach, *Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermiteln* Sitzungsber. Preuss. Acad. Wiss., 1916, Bd.138, S.940-955.
- [5] L. De Branges, *A proof of the Bieberbach conjecture*, Acta Mathematica, **154**(1-2) (1985), 137–152.
- [6] D.A. Brannan and J.G. Clunie, *Aspects of contemporary complex analysis*, In Proceedings of the NATO Advanced study institute held at University of Durhary Newyork: Academic press 1979.
- [7] D.A. Brannan and T.S. Taha, *On some classes of bi-univalent functions*, Studia Univ. Babes-Bolyai Math., **31**(2) (1986), 70–77.
- [8] M. Buyankara, M. Çağlar and L-I. Cotîrlă, *New subclasses of bi-univalent functions with respect to the symmetric points defined by Bernoulli Polynomials*, Axioms, **11**(11) (2022), 652.
- [9] M. Buyankara and M. Çağlar, *On Fekete-Szegö problem for a new subclass of bi-univalent functions defined by Bernoulli polynomials*, Acta Universitatis Apulensis, **71** (2022), 137–145.
- [10] M. Çağlar, L.-I. Cotirlă, and M. Buyankara, *Fekete-Szegö Inequalities for a new subclass of bi-univalent functions associated with Gegenbauer polynomials*, Symmetry-Basel, **14**(8) (2022), 8 pages.
- [11] M. Çağlar, E. Deniz and H.M. Srivastava, *Second Hankel determinant for certain subclasses of bi-univalent functions*, Turk.J. Math, **41** (2017), 694–706.
- [12] J.C. Caslin, H.E. Fettis and K.R. Cramer, *Complex zeros od the error function and the complementary error function*, Math. Comp., **27** (1973), 401–407.
- [13] M.A. Chaudhry, A. Qadir and S.M. Zubair, *Generalized error functions with applications to probability and heat conduction*, Int. J. Appl. Math., **9** (2002), 259–278.
- [14] D. Coman, *The radius of starlikeness for the error function*, Stud. Univ. Babes-Bolya. Math., **36**(2) (1991), 13–16.
- [15] E. Deniz, *Certain subclasses of bi-univalent functions satisfying subordinate conditions*, J. Classical Ana., **2**(1) (2013), 49–60.
- [16] E. Deniz, M. Çağlar, H. Orhan, *Second Hankel determinant for bi-starlike and bi-convex functions of order beta*, Appl. Math. Comput., **271** (2015), 301–307.
- [17] E. Deniz, J. M. Jahangiri, S. K. Kina, S. G. Hamidi, *Faber polynomial coefficients for generalized bi-subordinate functions of complex order*, J. Math. Ineq., **12**(3) (2018), 645–653.
- [18] E. Deniz, M. Kamali, S. Korkmaz, *A certain subclass of bi-univalent functions associated with Bell numbers and q-Srivastava Attiya operatör*, AIMS Mathematics, **5**(6) (2020), 7259–7271.
- [19] P.L. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, 1983.
- [20] A. Elbert and A. Laforgia, *The zeros of the complementary error function*, Numer. Algorithms, **49** (2008), 153–157.
- [21] M. Fekete and G. Szegö, *Eine Bemerkung über ungerade schlichte funktionen*, J. Lond. Math. Soc., **89** (1933), 85–89.
- [22] B.A. Frasin, *Coefficient bounds for certain classes of bi-univalent functions*, Hacet. J. Math. Stat., **43**(3) (2014), 383–389.
- [23] B.A. Frasin and M.K. Aouf, *New subclasses of bi-univalent functions*, Appl. Math., **24** (2011), 1569–1573.
- [24] B.A. Frasin, S.R. Swamy and I. Aldawish, *A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers*, J. Func. Spaces, **2021**(1) (2021), 4249509.

- [25] B.A. Frasin, S.R. Swamy, A. Amourah, J. Salah and R.H. Maheshwarappa, *A family of bi-univalent functions defined by (p, q) -derivative operator subordinate to a generalized bivariate Fibonacci polynomials*, Euro. J. Pure. Appl. Math., **17**(4) (2024), 3801–3814.
- [26] H.Ö. Guney, G. Murugusundaramoorthy and J. Sokol, *Certain subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers*, Acta Univ. Sapientiae Math., **10** (2018), 70–84.
- [27] S. Kazimoğlu and E. Deniz, *Fekete-Szegő problem for generalized bi- subordinate functions of complex order*, Hacet. J. Math. Stat., **49**(5) (2020), 1695–1705.
- [28] Y. Korkmaz and I. Akta, *Fekete-Szegő problem for two new subclasses of bi-univalent functions defined by Bernoulli polynomial*, Int. J. Nonlinear Anal. Appl., **15**(10) (2024), 1–10.
- [29] M. Lewin, *On a coefficient problem for bi-univalent functions*, Proc. Amer. Math. Soc., **18** (1967), 63–68
- [30] J.R. Loh and C. Phang, *Numerical solution of Fredholm fractional integro-differential equation with right sided Caputo's derivative using Bernoulli polynomials operational matrix of fractional derivative*, Mediterr J. Math., **16** (2019), 1–25.
- [31] P. Natalini and A. Bernardim, *A generalization of the Bernoulli polynomials*, Am. J. Appl. Math., **3**(3) (2003), 155–163.
- [32] E. Netanyahu, *The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$* , Arch. Ration. Mech. Anal., **32** (1969), 100–112.
- [33] H. Orhan, P.K. Mamatha, S.R. Swamy, N. Magesh and J. Yamini, *Certain classes of bi-univalent functions associated with the Horadam polynomials*, Acta Univ. Sapientiae, Math., **13**(1) (2021), 258–272.
- [34] R. Öztürk and İ. Aktaş, *Coefficient Estimate and Fekete-Szegő Problems for certain new subclasses of Bi-univalent functions defined by generalized bivariate Fibonacci polynomial*, Sahand Communications in Mathematical Analysis, **21**(3) 2024, 35–53.
- [35] C. Ramachandran, L. Vanitha and S. Kanas, *Certain results on q -starlike and q -convex error functions*, Math. Slovaca., **68**(2) (2018), 361–368.
- [36] P.K. Sahu and B. Mallick, *Approximate solution of fractional order Lane-Emden type differential equation by orthonormal Bernoulli polynomials*, Int. J. Appl. Comput. Math., **5**(3) (2021), 1–9.
- [37] H.M. Srivastava, Ş. Altinkaya and S. Yalçın, *Certain Subclasses of bi-univalent functions associated with the Horadam polynomials*, Iran J. Sci. Technol. Trans. Sci., **43** (2019), 1873–1879.
- [38] H.M. Srivastava, A.K. Mishra and P. Gochhayat, *Certain subclasses of analytic and bi-univalent functions*, Appl. Math. Lett., **23** (2010), 1188–1192.
- [39] S.R. Swamy, *Coefficient bounds for Al-Oboudi type bi-univalent functions based on a modified sigmoid activation function and Horadam polynomials*, Earthline J. Math. Sci., **7**(2), 2021, 251–270.
- [40] S.R. Swamy, D. Breaz, V. Kala, P.K. Mamatha, L-I. Cotîrlă and E. Rapeanu, *Initial Coefficient bounds analysis for novel subclasses of bi-univalent functions linked with Lucas-Balancing polynomials*, Mathematics, **12** (2024), 1325.
- [41] S.R. Swamy, B.A. Frasin, D. Breaz and L-I. Cotîrlă, *Two families of bi-Univalent functions associating the (p, q) -derivative with generalized bivariate Fibonacci polynomials*, Mathematics, **12** (2024), 3933.
- [42] S.R. Swamy and S. Yalçın, *Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials*, Prbl. Anal. Issues Anal., **11**(1) (2022), 133–144.
- [43] D.L. Tan, *Coefficient estimates for bi-univalent functions*, Chin. Ann. Math. Ser. A, **5** (1984), 559–568.
- [44] H.Tang, G. Deng, S. Li, *Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions*, J. Ineq. Appl., **2013** (2013), Art.317, 10 pages.
- [45] A.K. Wanas and L-I. Cotîrlă, *Applications of (M,N) -Lucas Polynomials on a certain family of bi-univalent functions*, Mathematics, **10**(4) (2022), 595.

¹DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING,
ACHARYA INSTITUTE OF TECHNOLOGY,
BENGALURU - 560 107, KARNATAKA, INDIA
Email address: swamy2704@acharya.ac.in, sondekola.swamy@gmail.com
Email address: pankaj2472@acharya.ac.in
Email address: geethalakshmi@acharya.ac.in