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SOME BI-UNIVALENT FUNCTION SUBFAMILIES ESTABLISHED BY
IMAGINARY ERROR FUNCTIONS LINKED TO BERNOULLI
POLYNOMIALS

SONDEKOLA RUDRA SWAMY!, PANKAJ KUMAR!,
AND NAYAKARAHALLI MANJEGOWDA GEETHALAKSHMI!

ABSTRACT. Using special functions, many researchers have studied several subfamilies of
the bi-univalent function family. This article presents and examines two subfamilies of
bi-univalent functions that are governed by Bernoulli polynomials defined by imaginary
error functions in the open unit disk. We obtain limits on initial coefficients for functions
in the specified subfamilies. The Fekete-Szego problem is also addressed for the elements of
the subfamilies that have been defined. We also present some new and intriguing results.

1. INTRODUCTION

Geometric Function Theory (GFT) is a fruitful branch of mathematics within complex
analysis. This sub-branch has been successful in attracting the attention of researchers in
recent years. Let 4 = {¢ € C: |¢| < 1}. The family of holomorphic functions ¢ in il of the
form

B(¢) =+ doc® +ds® + - =g+ > dicd, e, (1.1)
=

is identified by A. Let 8 be the subset of A defined by 8={¢ € A : ¢ is univalent in i}.
Bieberbach conjectured in [1] that for every function ¢ € 8, |d;| < j,7 > 2. Many new
subfamilies of § were defined, and several results were established, in order to resolve the
Bieberbach conjecture. Branges finally resolved this hypothesis for each j > 2 in [5] after
years of research into its proof. For every function ¢ € 8§ [21], Fekete-Szeg6 Functional (FSF)
|dg — &d3|, ¢ € R is another GFT problem. Researchers have published a large number of
papers on the above problem for functions that are members of subsets of 8. The bi-univalent
function class o is one of the most notable subclasses of 8. Levin introduced the concept
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of o of bi-univalent functions in [29] and is defined by 0={¢ € A : ¢ and ¢! = 1) are both
univalent in ${}. The well-known Koebe theorem (see[19]) says that the inverse of ¢ € § of
the form (1.1) is given by

o (w) = w — dyw? + (2d3 — d3)w® — (5d3 — 5dads + dy)w + - =p(w)  (1.2)
obeying ¢ = ¥(¢(¢), ¢ € &, and w = ¢(¢(w)), lw| < ro(¢), 1/4 < ro(¢), w € U Since

the functions %log (%2), 1o, and —log(1 — <) are members of the o family, the class o
is not a null set. %, ﬁ, and the Koebe function ﬁ, despite being in 8, are not

elements of ¢. For a brief analysis and to learn about some of the traits of the o family, see
[6,7,32,43]. Research on the family of bi-univalent functions have recently gained momentum
thanks to Srivastava and his co-authors for an article[38]. Since this article revived the
topic, numerous researchers have looked into a number of fascinating special o families; see
[11,15,16,22,23,27,141] as well as the citation provided in these articles.

Certain polynomials such as Bernoulli, Fibonacci, Gegenbauer, Faber, Horadam, Lucas-
Balancing, Lucas-Lehmer, (m, n)-Lucas, and their extensions are essential in a wide range
of disciplines, including combinatorics, computer science, engineering, number theory, nu-
merical analysis, and physics. Because of their extensive use in the applied sciences, some
extensions of these polynomials have been described in the literature. Recently, researchers
have concentrated on a particular class of polynomials known as Bernoulli polynomials.
The ability of this family of polynomials to capture complex behavior within a finite set
of terms makes them an intriguing basis set for function approximation, especially when
working with fractional derivatives, where the derivative is taken to a non-integer power.
By applying the concepts of integration and differentiation to non-integer orders, the area
fractional calculus makes it possible to model systems with memory effects or anomalous
diffusion more precisely. The Bernoulli polynomials have been applied in new ways to numer-
ically resolve Lane-Emden type fractional-order differential equations, a new approximation
method based on orthonormal polynomials has been created in [30], whereas, equations
involving Fredholm fractional integro-differentials and right-sided Caputo derivatives with
multi-fractional orders are numerically resolved using Bernoulli polynomials in Loh and
Phang [30].

The Bernoulli polynomials Bj(z),z € R, and j is non-negative integer, are frequently

specified (see, [31]) using the generating function:
ce™ ¢?
B(z,s) = 1 By(z) + Bi(z)s + Bz(l‘)g + - s < 2| (1.3)

With the following recursion, the Bernoulli polynomials can be easily calculated:

j—1 .
Z(j >Bn($):jl‘]_1, j:233747"'7

n
n=0

with the initial condition By(z) = 1. The following are the first few Bernoulli polynomials:

2z —1

1
5 Bo(z)=a* —x+ =, (1.4)

B1<1') 6
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Several scientific domains, such as statistics, probability, computer science, and numerous
engineering issues, depend on the error function. Mathematicians have therefore thought
about it a great deal. The error function was the subject of several important inequalities
and related subjects; for instances, see [12,13,20]. The error function

1)n§2n+1

erf(s f/ _ydy_fz 2%—&—1)/@"(60 (1.5)

and its approximations are commonly used to forecast events that have a high or low
probability of occurrin. Using (1.5), Ramachandran et al. [35] examined the normalized
regular error function given by

Ii 1.k
nerf(s) = \ﬁerf —§+Z 2/<;—1 ° 1>!,§€(C. (1.6)

By writing the integrand e as a Maclaurins series and integrating term by term, the

imaginary error function, represented by ierf, where "i" stands for the imaginary unit. This
allows for the inclusion of oscillatory components in solutions, which can be crucial when
modeling wave-like phenomena. As explained in ([1, 11]), the Maclaurins series can be

obtained as indicated below.
2n+1

ierf(s \f/ eV’ dy = IZ 1 ',ge(C (1.7)

Using (1.7), the imaginary error function in the normalized form is represented by nier and
is is defined by

. VTS
~ = C. 1.8
nierf(¢) = 5 ier f(\/<s C-I-Z 21%_1)( 1)!,§6 (1.8)
and utilizing the convolution product represented by *, we define
dy .
Io(s) = (nierf x¢)(s —§+Z m—l)(n—l)!g , (1.9)

where ¢ € 8 is of the form (1.1).

For a,, a,€ A holomorphic in i, a, is subordinate to a,, if there is a Schwarz function (<)
that is holomorphic in # with ¢(0) =0 and |¢(s)| < 1, such that a,(s) = a,(¢(s)), ¢ € L
This is symbolized as

a; < azoray(s) < ay(s).
Further, if a, € 8, then

a,(s) < a,(s) & a,(0) =a,(0) and a,(Y) C a,(L).

Bernoulli polynomials is a family of polynomials with special properties, GFT is a sub-
branch of complex analysis that focuses on the geometric properties of regular functions,
and the imaginary error function is a particular complex function. These three concepts
are related but represent different ideas in mathematics. When combined, they can be used
to study complex analytic functions and their geometric behavior, especially in relation to
conformal mappings and univalent functions. We may direct readers to [14,35] for certain



14 SONDEKOLA R. SWAMY, PANKAJ KUMAR, AND NAYAKARAHALLI M. GEETHALAKSHMI

investigations that combine the ideas of GFT and the error function. For some studies
that integrate the concepts of GFT and Bernoulli polynomials, we might refer readers to
[8,9,28]. In [2,3], intriguing investigations are conducted by fusing the concepts of Bernoulli
polynomials, GFT, and the imaginary function.

In recent years, a large number of studies have been carried out on functions that belong to
a certain o subfamily and are governed by known polynomials. For members of o subfamilies
that are linked to special polynomials, many researchers have discovered coefficient estimates
and the FSF |d3 — &d3|, € € R (See [10,17,18,24-26,33,34,37,30-42,45]).

Using the ideas of Bernoulli polynomials, GFT, and the imaginary function, we iden-
tify two Bernoulli polynomials-governed subfamilies of o: 20, (5, 7, x)and P, (5, 7, ) This
research is inspired by the work done in[2, 3].

This paper employs the function B(z, <) as in(1.3), ¢ € 4, and ¥ (w) = ¢~ H(w) as in (1.2),
w € 4, unless otherwise noted.

Definition 1.1. Let 0 < 8 <1, and 7 > 1. If ¢ € o satisfies

<((e())"
(1= B)s + B(I(s)) < B(2,¢), (1.10)
and
L)) < B(w) (L11)

(1= B)w + B(I(w))
then we say that ¢ € 2,(5, T, ).

Definition 1.2. Let 0 < 8 <1, and 7 > 1. If ¢ € o satisfies

[(cUo()))T
=5+ Uy " o) -
and
[(w(Ip(w)))]" < B(z,w), (1.13)

1 -3+ B(I¢(w))
then we say that ¢ € P, (8,7, x).

The following is the structure of the article’s content. For functions in the families
2, (8, 7,x) and By (3,7, z), the estimates for |da|, |ds|, and |d3 — &d3|, € € R are found in
Section 2. In Section 3, we highlight relevant instances of our primary findings, which were
demonstrated in Section 2. In Section 4, we conclude the study with some observations.

2. PRINCIPAL FINDINGS

For functions in the families 20, (3, 7,2) and B, (5, 7,x), Section 2 starts with bounds
for |da|, |ds|, and |d3 — &d3|, € € R.

Theorem 2.1. If ¢ € o is a member of W, (5, 7,2), 0 < S < 1,7 > 1, then
312z — 1]|v/|2z — 1]
|da| <

VI9G 37— 9)+ 32r(r — 1) + 52 — 276)) (22 — 1)? — 427 — B)2(a? — 2 + })|
(2.1)
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92z — 1) 52z — 1|

< .
ds] = 4(27’—ﬁ)2+ 3r—p8" (22)
and for £ € R
5]2z—1| . ’1 _5‘ <7
|d3 — £d3| < { 3T—pB 9)22—1/3 [1—¢| g > T (2.3)
1905 (37—B)+5 (2r(r=1)+82-278)) (22 —1)>~4(2r ) (a?—z+5)| =5
where
Y 5 9(%(37 —-p)+ %(27(7’ — 1)+ 8% -278)) (22 — 1)? —4(27 — B)*(2® —x + %) .
9 (31— B)(2z — 1)2
(2.4)

Proof. Let ¢ € W, (B, 7,x) Then, from subordinations (1.10) and (1.11), we can write

<((Lo(5))"
(1=PB)s + B(I¢(s))

= B(z,(c)), (2.5)
and
w((Ip(w))")™
(1= B)w+ B(I(w))

where Schwarz functions [(¢) = l1s + lo¢? + -+ and m(w) = myw + mow? + - - - satisfy

] <1, and |mj| < 1(j € N). (2.7)

= B(z,m(w)), (2.6)

(See[19]). The following are the representation of equations (2.5) and (2.6) using some
fundamental mathematical methods:

(IS L
A= B+ Aoy - T3~ A
+ <110(37' — B)ds + %(27’(7’ —1) - p2r — B))d%> 2. (28)
Bl 1)) = 1+ Bi(is + (Bio)e + 2208 ) 2 (2.9)
and
w((Ih(w)))

1
0= Byw+ plIotw) 337~ Dzt

1 1
(10(37 ~ B2 — ds) + g (2r(r — 1) — (27 ,6))d§> w? g
(2.10)
By(z) o\, o
B(x,m(w)) =1+ By(z)mw + | Bi(x)mg + o M1 | w + e (2.11)
Due to (2.5), we compare terms of the same degree in (2.8) and (2.9) and arrive at the

following relations:
1
5(27' — B)d2 = Bi(z)h, (2.12)

and
Bs(x)

2!

BT B)ds+ g (or(r — 1) — B2 — /)3 = Bi(a)ts +

2, 2.1
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Similar to this, we compare terms of the same degree in (2.10) and (2.11) due to equality
(2.6), and arrive at the following expressions:
1

—3(2r = B)dz = Bi(x)mi, (2.14)
and
1 9 1 2 BZ(x) 2
E(37’ — B)(2d5 — d3) + §(27‘(7' —1) =827 — 8))d5 = Bi(z)mg + S M- (2.15)
From equations (2.25) and (2.14), we get
[1 = —my, (2.16)
and 5
§(27 — B)*d3 = (2 + m?)Bi(z). (2.17)

Addition of equations (2.13) and (2.15) yields

(367 =)+ 2ertr—1) = 5r =) & = Bio)(to +m) + 2@ 4w, (215)

Replacing [# +m? from equation (2.17) into equation (2.18), we get:
2 9B} (x)(I2 + my)
9 (137 - B) + 3(27(r = 1) = B(27 - B))) Bi(z) - (27 — B)*B(x)
The ineaquality (2.1) is obtained by using equation (1.4) for Bj(z), B2(z) and applying

(2.19)

equation (2.7) to [z, ma.
The bound on |ds| is obtained by subtracting (2.15) from (2.13):

5B1(x)(lp — my) .

d3 = dj 2.20
3 =a3 + p— (2.20)
When d3 is substituted from equation (2.17) into equation (2.20), we obtain
B?(z)( + m3 Bi(z)(ly —
4o 9B+ m) | 5B(o)(l — ma) o)

2(21 — B)? 3r—p
Using (1.4) and (2.7), we derive (2.2) from (2.21). Lastly, we use the value of d3 from (2.19)
in (2.20) to compute the bound on |d3 — £d3|. As a result, we have

s — ¢l = 11 (o) |5+ V€)1 = (5= = Va(€) ) o

where
9(1 — &) Bt
\72(6’%) — 1 5 ( 5) 1($) . )
9 (67— 8) + 2@2r(r— 1) = B(27 = 8))) B (x) — (27 — B)*Ba(a)
Clearly
10| B1 (z)| . 5
|ds — £d3| < { 374  [V2(6 o)) < 378 (2.22)
2|Bi(2)|[Va(&, ) 5 Vol 2)| 2 5775
From (2.22), we derive (2.3), where Y is identical to that in (2.4). O

By taking £ = 1 in the above theorem, we get the below inequality.
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Corollary 2.1. If ¢ € o is a member of W, (B3, 7, ), then |dz — d3| < 5!,)27"”7:51‘

Theorem 2.2. If ¢ € o is a member of P (5, 7,2), 0 < S < 1,7 > 1, then

] < 312z — 1|v/|2z — 1]
- \/I9(%(3T —B)+52r(1 —1) = B(21 = §)))(2x — 1)2 = 16(27 — B)%(2? — z + §)|
(2.23)
9(2¢ —1)2 52z —1]
|d3] < 62 — )2 T 337 B (2.24)
and for £ € R
ey 1-g < T
|ds — &d3| < {3(317 7 912013 [1—¢]| =g >
9 Br—B)+3 (2r(r—1)—B(27—H))) (22—1)°—16(2r—B)2 (x> —a+7)| =
(2.25)
where
S_5 5 19237 - 8) +8@2r(r —1) — B2T — B)))(2x — 1)2 — 16(27 — B)*(2® — x + )
27 (31— B)(2r — 1)? '

(2.26)

Proof. Let ¢ € W, (B, 7,x). Then, from subordinations (1.10) and (1.11), we can write

(CUST g,
T+ oy ) 220

and

@)V
1=+ altuuy 22

where Schwarz functions [(¢) = Z i/, and m(w) = Z mjw’, ¢, w € U satisfy the prop-

erty (2.7) (See[19]). Equation (2 27) can be written as follows by employing a few basic
mathematical techniques:

GUOYYT 2.

57105y A L

(10(37 — B)ds + 3(27(7 —1) - B(2r - ﬂ))d%) Z e, (229)
SB@J@D=:L+Bﬂ@h<+(Bﬂ@b%—Bim@><z+~', (2.30)

and equation (2.28) can be written as follows by employing a few basic mathematical

(@) 2,
T— B+ AIp(w)y 3T ket

(130(37 — B)(2d3 — d3) + 3(27(7 —1)—B(2r — 5))d§) wrt -

techniques:

B(z,m(w)) =1+ Bi(z)mw + (Bl(x)mz + B;gx)m%> w4 (2.32)
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Due to equation (2.27), we arrive at the following result by comparing the terms in equations
(2.29) and (2.30):

%(27 — B)dy = By (2)h, (2.33)

and

%(37‘ — B)ds + 3(27(7' — 1) — B(21 — B))d3 = Bi(z)ls + 322(‘%) 3 (2.34)

Similarly, due to equation (2.28), we arrive at the following result by comparing the terms
in equations (2.31) and (2.32):

—2(27 _ B)ds = Bu(x)my, (2.35)
and
130 (31 — ﬁ)(Qd% —ds) + 3(27(7' —1)—pB(2r — ﬂ))d% = Bi(z)mg + Bégx)m% (2.36)
From (2.33) and (2.35), we get
[1 = —my, (237)
and
g(zr — B)%d% = (8 + m?)Bi(x). (2.38)

Addition of equations (2.34) and (2.36) yields

3 8 Ba(x
<5(3r = B)+5@2r(r=1) = B2 - 5))) d3 = Bi(z)(lz + mg) + 22( )([% +mi). (2.39)
Replacing I? +m? from equation (2.38) into equation (2.39), we get:
B (z)(1
i = 9Bi(2) (2 +m2) . (2.40)

9(2(3r—B) +5(2r(r = 1) = B(2r — B))) B(x) — 4(27 — B)* Ba(x)

Applying equation (2.7) to [z, my, and using equation (1.4) for Bj(x), Ba(z) yields (2.23).

The bound on |d3]| is obtained by subtracting (2.36) from (2.34):
531(1')([2 — mg)

ds = dj 2.41
P E T TG ) 241

If we replace d3 using equation (2.38) into equation (2.41), we obtain:
ds = 93%(%)([? + m%) 531(.%')([2 —my) (2.42)

s2r—pB2 | 3@3r—p)
We deduce equation (2.24) from equation (2.42) by applying equations (1.4)and (2.7). Fi-
nally, we compute the bound on |d3 — &d3| using the value of d3 from (2.40) in (2.41).
Consequently, we have

- ¢ = 110 | (55

331 —5)

5

T \72(5,:6)) 2 - (3(37 )

— Va(§, 56)) ma|,

where
9(1 — ) B}(x) |
(27(r = 1) = B(27 — B))) Bi(x) — 4(27 — 0)*Bs ()

Nej
/N
gl
—~
w
)
|
=)
SN—
+
Ol



SOME BI-UNIVALENT FUNCTION SUBFAMILIES ESTABLISHED BY IMAGINARY ERROR 19

Clearly
10| B1 (z)| Ry < _5
|dy — &d3| < ¢ 27 P) ale ol ) (2.43)
2[Bi(2)||Va(&,2) 5 [V2(&2)| 2 53757
We derive (2.25) from (2.43), with T is the same as in (2.26). O

By taking £ = 1 in the above theorem, we get the below inequality.

5]2z—1|
3(3r—0) "

Corollary 2.2. If ¢ € o is a member of Bo (B, 7,z), then |d3 — d3| <

3. SPECIFIC INSTANCES

We derive the following instances through the specialization of the parameters 3, and 7
in W, (8,1, x).

Example 3.1. Letting 7 = 1 in 20,(5, 7, ), we get R, (5, x) = W, (5,1, x) a subfamily
of elements ¢ € o satisfying

s(I9(s))’
(1= B)s + BLo(s)

where 0 < 8 < 1.
According to Theorem 2.1, the following result holds when 7 = 1:

w(Iy(w))’
(1= B)w + BIY(w)

< B(x,s), and < B(z,w),

Corollary 3.1. If ¢ € o is an element of R,(8,x), 0 < <1, then

312z — 1|V/|2z — 1]

|da| <
VGG -8 - B2 - ) - 12 —42 - B2 -2+ })

)

92z —1)2 52z — 1]

9

|ds| < 12 5)? 57
and for £ € R
5|22—1] .
|d3 — £d3| < { o 9[2z 1% |1-¢| ’ 1 _ 2: i 11
9(1(3-8)- 2L (2-8))(22-1)2—4(2—f)2 (22 —a+1)| = 1y,
where
v, =5 |9<é<3 ~A) +H =B -1 - 42 - fAa* —a+§)|

(3= pB)(2x—1)°
Example 3.2. Letting 8 =1 in 20,(5, 7, x), we get M, (7, 2) = W, (1, 7,x) a subclass of
functions ¢ € o satistying

s((e(s))"
I¢(s)

w((IY(w))")"

< B(x,s), and To(w)

where 7 > 1.
The following is the outcome of Theorem 2.1 when 8 = 1:
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Corollary 3.2. If ¢ € o is an element of My(T,x), T > 1, then

3|2z — 1)/[2z — 1]

VI9GGBT — 1) + 2272 — 47+ 1)(20 — 1) — 4(2r — 1)2(22 — z + 1)|

)

|da| <

92z —1)2 522 — 1]
dz| <
< e T a1
and for £ € R
5|2z—1] l—g<T
31—1 ’ = 2
|ds — &d3| < 9120—1|3 |[1—¢| —el> T
193 (3r—1)+2 (272 —47+1))(22—1)2—4(27—1)2 (a2 —a+5)| = 2
where
T, — 59537 — 1) + (272 — 47 + 1)) (22 — 1)* 421 = 1)°(2* — 2 + §) ‘
9 (31 —1)(2z — 1)

Example 3.3. Letting 8 = 0 in 2,(8, 7, z), we get a subclass 9, (7, ) = 2, (0, 7, z) of
functions ¢ € o satisfying

((I$(<)))" = B(w,<), and (I(w)))" < B(z,w),

where 7 > 1.
The outcome of Theorem 2.1 is as follows when 8 = 0:

Corollary 3.3. If ¢ € o is an element of Y, (1,2), T > 1, then

312z — 1]|V/|2z — 1|

\/|7'(47' + )2z —1)2 = 1672(22 — 2 + §)|

|da| <

)

92z — 1) 52z — 1]
ds| <
T A R
and for £ € R
52z-1| . ’1 _ 5‘ <7
T ’ = 3
|ds — &dj| < ’ 9)2z—1P3 [1—¢| - > T
Ir(47+2)(22—1)2—1672(z2—a+5)| = %
where
.0 (4r+ D2z —1)2 = 167(z® —x + })
ST a7 (22 — 1) '

We derive the following instances by specializing the parameters § and 7 in B, (5, 7, z).
Example 3.4. Letting 7 = 1 in P, (5, 7, z), we get a family Q,(5,2) = B, (5,1, ) of
functions ¢ € o satistying
(s(Le(<))")
1= B+ BI¢(s))

where 0 < g < 1.
According to Theorem 2.2, the following result holds when 7 = 1:

(w(Iy(w))")’
1= B+ B(IY(w))

- < B(z,5), and - =< B(z,w),
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Corollary 3.4. If ¢ € o is an member of Q,(8,x), 0 < B < 1, then

da] < 312z — 1|v/|2z — 1]
VIOGB—5) - F(2-B)(2r — 12 - 16(2 - B)2(a? —x + §)|
ds] < 92z —1)? 52z —1|
T 16(2-8)2 T 33-8)
and for £ € R
5|2:E—1| . ’1 _5’ < —|
33-5 ' = I
|ds _fd%‘ < { (' ) 9[2z—1% [1-¢| l—¢l> T
9(2(3-8)— % (2-8)) 22-1)>~16(2—B)2 (2> —a+§)| =
where
. 9EB - 8)+ 2= 82— 1)~ 16(2 - B)*(* — 2 + )
L 27 (3—5)(2z —1)? '

Example3.5. Let 8 =1 in B, (5, 7, x).Then we get R, (7,2) = P, (1, 7, x) a subclass of
members ¢ € o satisfying
[(s(Lp())T [(w(Iy(w))) ]
el < %B(zx,s), and < B(z,w),

where 7 > 1.
The following is the outcome of Theorem 2.2 when 8 = 1:

Corollary 3.5. If ¢ € o is an element of R, (1, z), T > 1, then

322 — 1]\/[22 — 1]

|da| < :
VI9GBr — 1)+ 8(2r2 — 47 + 1)(20 — 1)2 — 16(27 — 1)2(a2 — 2 + 1)
92z — 1) 52z — 1
|ds| < ;
16(2r —1)2 ' 3(3r —1)
and for £ € R
2 3(3r—1) ) = 2
|ds — &d3| < { 92013 [1—¢]| —¢ >
[9(2(Br—1)+5(2r2—47+1))(20-1)2—16(27—1)2(z2—2+£)| ' = 2
where
-0 9EBr—1)+8(2r2 —dr+1))(2z — 1)2 - 16(27 — 1)*(2® — 2 + %)
> o7 (3r —1)(2z — 1)2 ‘

Example3.6. Let 5 =0 in P, (5, 7,2). Then we get S, (7,2) = P, (0,7, z) a subclass
of elements ¢ € o satisfying

(s(Te(s)))" = B(x,<), and (w(IP(w)))" < B(z,w),

where 7 > 1.
The outcome of Theorem 2.2 would be as follows, if 5 = 0.
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Corollary 3.6. If ¢ € o is an element of &,(1,z), T > 1, then

312z — 1|v/|2z — 1]

VIT(67 + 1)(22 — 1)2 — 6472(22 — 2 + 1)

|da| <

)

92z — 1) 52z — 1]

ds| <

sl < = T T
and for £ € R

|ds — &d3| < o 9[22z —13 |1—¢| -] ; <

Ir(167+1)(2c—1)2—64r2(c2—a+ 1)’ = 3

where
¢ — 5| (167 + £)(22 — 1)? — 647(2® —x + §)
81 (22 —1)2 ‘

4. CONCLUSION

In this presentation, we've established two subfamilies of regular and bi-univalent func-
tions linked to Bernoulli polynomials denoted by 20,(3, 7, z) and B, (8, 7, x). Maclaurin
coefficients |da| and |d3| have been estimated for functions that are members of the defined o
subfamilies. For functions in these subfamilies,We have also ascertained the FSF |d3 — £d%\,
¢ € R. As discussed in Section 2, specialized parameters applied to our findings result in
intested outcomes. For readers who are interested, we conclude by pointing out that the
defined subfamilies can be examined for Hankel determinant problems of higher order. It is
possible to introduce numerous known subfamilies of the ¢ family that are subordinate to
Bernoulli polynomials. When it comes to functions that are part of the new subfamilies of
the o family connected to Bernoulli polynomials, the FSF |d3 —£d3], &€ € R and the estimates
of the coefficients |da|, |ds|, and the Hankel determinant problems of higher order can be
found.

In essence, you get a powerful mathematical tool for approximating and solving complex
problems involving fractional derivatives when you combine the ideas of the imaginary error
function, Bernoulli polynomials, and fractional calculus. These concepts are frequently
used in modeling phenomena with memory effects or non-integer order dynamics, where
the imaginary error function adds a complex component to the solution that enables more
nuanced analysis of oscillatory behaviors, and the Bernoulli polynomials provides a basis
for function representation.

Also, combining the imaginary error function, Bernoulli polynomials, and g-calculus en-
tails investigating the mathematical characteristics and connections among these seemingly
separate ideas. This frequently involves number theory, complex analysis, and a particular

type of calculus called g-calculus, in which derivatives are defined using a "¢" parameter,

producing intriguing extensions of standard calculus results.
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