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ON GRAND CESÁRO SEQUENCE SPACES

OĞUZ OĞUR1

Abstract. In this paper, we introduce the grand Cesàro sequence space, inspired by [15],
and characterize its fundamental properties. Furthermore, we establish inclusion relations
using newly derived inequalities.

1. Introduction

Let 1 ≤ t < ∞. the space cest is defined as follows;

cest =

z ∈ w :
∞∑

r=1

{
1
r

r∑
s=1

|z(s)|
}t

< ∞

 , (1.1)

where w is the space of all sequences, equipped with the norm

∥z∥cest
=

 ∞∑
r=1

{
1
r

r∑
s=1

|z(s)|
}t
 1

t

. (1.2)

Cesáro sequence spaces were first introduced by the Dutch Mathematical Society at the
end of 1968 as the question of finding the duals of these spaces ([2]). Shiue gave a solution
to this problem and also examined some properties of Cesaro sequence spaces ([18]). (For
more details see [4, 10,11,13,17,19,20]).

The grand spaces were firstly defined by Iwaniec and Sbordone . They gave the grand
Lebesgue spaces Lt) to benefit the solution of partial differential equations ([7]). Samko
and Umarkhadzhiev worked on these spaces on sets whose measure is infinite ([16]). Later,
Rafeiro et al. introduced the grand Lebesgue sequence spaces ℓt),ν = ℓt),ν(Y ) and examined
properties of several operators ([15]). The grand Lebesgue sequence space ℓt),ν = ℓt),ν(Y ) is
defined as follows;
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∥z∥ℓt),ν(Y ) = sup
γ>0

(
γθ
∑
s∈Y

|z(s)|t(1+γ)
) 1

t(1+γ)

= sup
γ>0

γ
ν

t(1+γ) ∥z∥ℓt(1+γ)(Y ) (1.3)

where Y is a set from the collection Zn,N0,N,Z for 1 ≤ t < ∞, ν > 0. Finally, Ogur defined
grand Lorentz sequence spaces as a generalization of grand Lebesgue sequence spaces and
characterized the multiplication operator defined on these spaces ([14]).

In this work, we define the grand Cesáro sequence space and study some of basic properties.
Let 1 < t < ∞ and ν > 0. Then, the set cest),ν consists of all z ∈ w such that

supγ>0

γν
∞∑

r=1

{
1
r

r∑
s=1

|z(s)|
}t(1+γ)

 1
t(1+γ)

< ∞. (1.4)

2. Main Results

Here, for 1 < t < ∞ and ν > 0 the space cest),ν is examined.

Theorem 2.1. The set cest),ν is a real linear space for 1 < t < ∞ and ν > 0

Proof. Let z, u ∈ cest),ν and λ, µ ∈ R. Then, we have

supγ>0

γν
∞∑

r=1

{
1
r

r∑
s=1

|λz(s) + µu(s)|
}t(1+γ)

 1
t(1+γ)

= supγ>0γ
ν

t(1+γ)

 ∞∑
r=1

{
1
r

r∑
s=1

|λz(s) + µu(s)|
}t(1+γ)

 1
t(1+γ)

≤ supγ>0γ
ν

t(1+γ)

 ∞∑
r=1

{
1
r

r∑
s=1

λ |z(s)| + µ |u(s)|
}t(1+γ)

 1
t(1+ε)

≤ supε>0ε
θ

t(1+ε)

2t(1+ε)−1
∞∑

r=1

{
1
r

r∑
s=1

λ |z(s)|
}t(1+ε)

+
{

1
r

r∑
s=1

µ |u(s)|
}t(1+ε)

 1
t(1+ε)

= supε>0ε
θ

t(1+ε) 2
t(1+ε)−1

t(1+ε)

 ∞∑
r=1

{
1
r

r∑
s=1

λ |z(s)|
}t(1+ε)

+
{

1
r

r∑
s=1

µ |u(s)|
}t(1+ε)

 1
t(1+ε)

≤ 2λsupε>0ε
θ

t(1+ε)

 ∞∑
r=1

{
1
r

r∑
s=1

|z(s)|
}t(1+ε)

 1
t(1+ε)

+ 2µsupε>0

εθ
∞∑

r=1

{
1
r

r∑
s=1

|u(s)|
}t(1+ε)

 1
t(1+ε)

< ∞.
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This shows that cest),θ is a real linear space. □

Theorem 2.2. Let 1 < t < ∞ and θ > 0. Then, the space cest),θ is a normed linear space
with the function

∥x∥t),θ = supε>0

εθ
∞∑

r=1

{
1
r

r∑
s=1

|z(s)|
}t(1+ε)

 1
t(1+ε)

= supε>0ε
θ

t(1+ε) ∥z∥t(1+ε) . (2.1)

Here, ∥z∥t(1+ε) is the norm of Lebesgue sequence space.

Proof. It is enough to show the triangle inequality. Let z, u ∈ cest),θ. Thus, we get

∥z + u∥t),θ = sup
ε>0

ε
θ

t(1+ε) ∥z + u∥t(1+ε)

≤ sup
ε>0

ε
θ

t(1+ε)
(
∥z∥t(1+ε) + ∥u∥t(1+ε)

)
≤ sup

ε>0
ε

θ
t(1+ε) ∥z∥t(1+ε) + sup

ε>0
ε

θ
t(1+ε) ∥u∥t(1+ε)

= ∥z∥t),θ + ∥u∥t),θ .

□

Theorem 2.3. Let 1 < t < ∞ and θ > 0. The space cest),θ is a Banach space with its
norm.

Proof. Let {zn}n∈N be an arbitrary Cauchy sequence in the space cest),θ. Then, for δ > 0
there exists N ∈ N such that

∥zn − zm∥t),θ = supε>0

εθ
∞∑

r=1

{
1
r

r∑
s=1

|zn(s) − zm(s)|
}t(1+ε)

 1
t(1+ε)

< δ

whenever n, m > N . Thus, we have that the sequence {zn}n∈N is a Cauchy sequence in the
space ℓt),θ. So, we have z ∈ ℓt),θ such that {zn}n∈N converges to z in ℓt),θ. Also, by the
inequality

∥z∥t),θ ≤ ∥zn − z∥t),θ + ∥zn∥t),θ

we get that x ∈ cest),θ.
□

Theorem 2.4. Let 1 < t < ∞ and θ > 0. Then, cest is included by cest),θ.

Proof. Let z ∈ cest. Then, there exists M > 0 such that

∥x∥cest
=

 ∞∑
r=1

{
1
r

r∑
s=1

|z(s)|
}t
 1

t

≤ M.

Since the function ∥z∥t(1+ε) is a decreasing function for ε, we have
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∥z∥t),θ = supε>0

εθ
∞∑

r=1

{
1
r

r∑
s=1

|z(s)|
}t(1+ε)

 1
t(1+ε)

= supε>0ε
θ

t(1+ε) ∥Cz∥t(1+ε)

≤ supε>0ε
θ

t(1+ε) ∥Cz∥p

≤ ε
θ

t(1+ε0)
0 ∥Cz∥t

≤ Mε
θ

t(1+ε0)
0 .

Here, ε0 = 1
W (1/e) ≃ 3.59 and W : R+ → R+, W (a) = aea is Lambert function (for more

details see [1]). □

Theorem 2.5. Let 1 < t < ∞ and θ > 0. Then, lt),θ is contained by cest),θ.

Proof. Let z ∈ ℓt),θ. Then, there exists M > 0 such that

∥x∥ℓt),θ = supε>0

[
εθ

∞∑
r=1

|z(r)|t(1+ε)
] 1

t(1+ε)

= supε>0ε
θ

t(1+ε) ∥z∥t(1+ε) ≤ M.

Thus, by the Hardy inequality we get

∥z∥t),θ = supε>0ε
θ

t(1+ε) ∥Cz∥t(1+ε) ≤ supε>0ε
θ

t(1+ε)
t(1 + ε)

t(1 + ε) − 1 ∥z∥t(1+ε) .

Let define f(x) = t(1+x)
t(1+x)−1 . So f

′(x) = −t
(t(1+x)−1)2 and since 1 < t < ∞, we have f

′(x) < 0.
This shows that the function f is a decreasing. Thus, we get

∥z∥t),θ ≤ supε>0ε
θ

t(1+ε)
t

t − 1 ∥z∥t(1+ε) = t

t − 1 ∥z∥ℓt),θ

which completes the proof. □

Theorem 2.6. Let 1 < t < ∞ and θ > 0. If t < q, we have the inclusion cest),θ ⊆ cesq),θ

Proof. Let z ∈ cest),θ. Thus, there exists M > 0 such that ∥z∥t),θ ≤ M . Since the function
∥z∥t(1+ε) is decreasing, we get

∥z∥q(1+ε) = supε>0ε
θ

q(1+ε) ∥Cz∥q(1+ε)

≤ supε>0ε
θ

q(1+ε) ∥Cz∥t(1+ε)

≤ supε>0ε
θ

t(1+ε) ∥Cz∥t(1+ε)

≤ M

< ∞.

□
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