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GEOMETRIC CONSTRAINTS FOR REGULARITY OF 3D
FRACTIONAL MAGNETO-MICROPOLAR SYSTEM

AMJAD HUSSAIN1 AND MUHAMMAD NAQEEB1

Abstract. We set up two new geometric constraints: one on the vorticity for the Beale-
Kato-Majda type result and the other on the gradient velocity. These are important for
keeping the weak solutions to the 3D incompressible fractional magneto-micropolar system
from blowing up over a finite time interval. Due to fractional operators and the blow-up of
weak solutions, it is worthwhile to study such systems to obtain their finite-time regularity.
We use the energy methods to obtain energy bounds for the vorticity and gradient velocity,
ensuring smoothness in the interval [0, T ].

1. Introduction of the problem

The Cauchy problem of a generalized incompressible magneto-micropolar system is con-
sidered in the whole 3D domain, which is R3, as well as in the finite time domain, which is
[0, T ]: 

Ut + U · ∇U + (−∆)αU + ∇ψ − V · ∇V − 2(∇ × W) = 0,
Wt + U · ∇W + (−∆)βW − ∇divW + 4W − 2(∇ × U) = 0,
Vt + U · ∇V − V · ∇U + (−∆)γV = 0,
∇ · U = 0, ∇ · V = 0,
(U,W,V)|t=0 = (U0,W0,V0),

(1.1)

where U, W, and V are the velocity field, micro-rotational velocity, and magnetic field,
respectively, while ψ(x, t) is the scalar pressure. Throughout the paper, Ω = ∇ × U

denotes the vorticity, generic constant C could change from line to line, and parameters
α, β, γ ≥ 1. The divergence-free conditions are satisfied by velocity and magnetic field, with
initial conditions U0,W0, and V0 given for velocity, micro-rotation and magnetic field. The
Zygmund operator Π = (−∆)

1
2 is defined in terms of the Fourier transform:

Π̂if(ξ) = |ξ|if̂(ξ), ∀ i ≥ 0.
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Due to the vast applications of fractional partial differential equations (PDEs) [9] in
modeling more complex problems of diffusion in geological and biological systems, signal
processing, and long-term memory, it is pertinent to study the fractional magneto-micropolar
system (1.1). Fractional PDEs also model the spread of disease and the transport of
pollutants in biomedical engineering and environmental sciences. Similarly, system (1.1)
is used to study damping and optimization problems in magnetic fluids and industrial
processes. One more vital application of the fractional magneto-micropolar system is to
model microfluid particles suspended in fluids.

In the earlier nineteenth century, with the introduction of Sobolev spaces, weak solutions,
and other harmonic analysis tools, the mathematical theory of partial differential equa-
tions advanced effectively. Although the understanding of the differentiability properties
of solutions has improved, the problem of the regularity of weak solutions, whose existence
is only known, remains open and is considered one of the millennium problems [6]. In
terms of velocity, Serrin was the first person to show that the Leray-Hopf weak solutions
to the Navier-Stokes equations (NSE) are regular. Later on, results on the other geometric
constraints, i.e., pressure, vorticity, and gradient velocity, were also presented (see [4,5,16]).
System (1.1) is connected to the Navier-Stokes equations with fractional micro-rotation and
magnetic diffusion. This enables us to address complex problems such as the movement of
liquid crystals, ferromagnetic particles, animal blood flow, and diluted water. There has
been a lot of research about the well-posedness problem for the mathematical models (NSE,
micropolar systems, magnetohydrodynamic systems, and magneto-micropolar systems) that
are part of the system (1.1), and many new results have been shown for them. Recently,
Deng and Shang [2] showed the global existence of systems (1.1) using Lebesgue and Sobolev
spaces. Fan and Zhong [3] showed the local existence and uniqueness of the system (1.1)
and also proved the following geometric constraints for the velocity and gradient velocity
that keep the solutions of the given system from blowing up in the given time interval:

U ∈ L
2s

s−r (0, T ; Ẋr,s−1),

∇U ∈ L
2s

s−r (0, T ; Ẋr),

∇U ∈ L
2s

s−r (0, T ; Ẋr,s),
∇U ∈ L1(0, T ; Ḃ0

∞,∞),

(1.2)

for 0 < r < s ≤ 5
4 .

Remark 1.1. When V = 0, system (1.1) becomes fractional micropolar system; when W = 0
and V = 0, system (1.1) reduces to fractional NSE.

Recently, Qiu et al. [19] showed the existence of system (1.1) for higher dimensions in the
Besov spaces while Yan and Chen [18] proved the following two new results in the Triebel
Lizorkin space

ψ ∈ Lr(0, T ; Ḟ 0
s, 10s

5s+6
,
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for 2
r + 3

s = 1 + 9
5s ,

12
5 < s < 4,

and

∇ψ ∈ Lr(0, T ; Ḟ 0
s, 8s

12−3s
,

for 2
r + 3

s = 11
4 ,

12
11 < s < 4.

Although numerous well-posedness and regularity results are proven for other systems,
the detailed study of the local and global regularity of the system (1.1) clearly lacks. In
this article, we aim to address this gap by establishing more stringent geometric constraints
for vorticity and gradient velocity, which are crucial for managing the blow-up of any three-
dimensional system within a finite time interval. These results are novel and proved in more
general and regular Besov function spaces.

Remark 1.2. In this research work, we will focus on improving the condition (1.2) and
presenting the new vorticity constraint.

2. Main Results and Their Proofs

First, we present some definitions, inequalities, and propositions useful to prove our
results.

Definition 2.1. A function f ∈ BMO, if ∥f∥BMO < ∞, where

∥f∥BMO = sup
B

1
m(B)

∫
B

|f(x) − fB|dx,

and

fB = 1
m(B)

∫
B
f(x)dx with B a ball over Rn.

Definition 2.2. [1] Suppose ∀ l, τ ∈ R and p, q ∈]0,∞], then the homogeneous Besov spaces
are the set of all f ∈ S

′
∞. Such that

∥f∥
Ḃl,τ

p,q
:= sup

k∈Z
sup
ν∈Zn

2kστ
( ∑

j≥k

(
2lj∥Qjf∥Lp(Pk,ν)

)q) 1
q
< ∞.

Proposition 2.1. [2] Let (U,W,V) be weak solution of the system (1.1). Then ∀ t ∈ [0, T ]

∥ΠsW∥2
L2 + ∥ΠsW∥2

L2 + ∥ΠsW∥2
L2 +

∫ T

0

(
∥Πs+αU∥2

L2 + ∥Πs+βW∥2
L2 + ∥Πs+γV∥2

L2
)
dt ≤ C.

(2.1)
In order to prove our results, we will use the following inequalities given in [7, 10, 11, 13],

for 1 ≤ r < ∞ and s > 5
2 we have that

∥f∥2
L2r ≤ C∥f∥Lr ∥f∥BMO (2.2)

∥f∥BMO ≤ C
(
1 + ∥f∥Ḃ0

∞,∞
log

1
2 (1 + ∥f∥Hs−1)

)
(2.3)

∥(V · ∇)V∥Lr ≤ C∥V∥Lr ∥∇V∥BMO

∥∇U∥2
L4 ≤ C∥∆U∥L2∥∇U∥Ḃ−1

∞,∞
. (2.4)
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For a detailed discussion of the weak solutions and function spaces, see [15].

2.1. Beale-Kato-Majda type regularity result. Next, we establish geometric con-
straints of the Beale-Kato-Majda type by using intricate energy methods.

Theorem 2.1. Let (U0,W0,V0) ∈ Hn(R3) with n > 5
2 and ∇ · U0 = 0, ∇ · V0 = 0 in

distributional sense. If a weak solution (U,W,V) of system (1.1) satisfies the following
constraint for vorticity ∫ T

0

∥Ω∥Ḃ0
∞,∞√

(1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)
dt < ∞, (2.5)

then it retains its smoothness in [0, T ], until it blows-up at T = T ∗.

Proof. Firstly, testing (1)1 with ∆U, and using the divergence-free properties of velocity
and magnetic field, we have that∫

R3
Ut · ∆U dx+

∫
R3

U · ∇U · ∆U dx+
∫
R3

(−∆)αU · ∆U dx+
∫
R3

∇ψ · ∆U dx

−
∫
R3

V · ∇V · ∆U dx−
∫
R3

2(∇ × W) · ∆U dx = 0,

1
2
d

dt
∥∇U∥2

L2 + ∥Π1+αU∥2
L2 =

∫
R3

V · ∇V · ∆U dx−
∫
R3

U · ∇U · ∆U dx.

= X1 +X2. (2.6)
Secondly, testing (1)2 with ∆W, and using the divergence-free properties, we get that∫

R3
Wt · ∆W dx+

∫
R3

U · ∇W · ∆W dx+
∫
R3

(−∆)βW · ∆W dx−
∫
R3

∇divW · ∆W dx

+
∫
R3

4W · ∆W dx−
∫
R3

2(∇ × U) · ∆W dx = 0

1
2
d

dt
∥∇W∥2

L2 + ∥Π1+βW∥2
L2 + 4∥∇W∥2

L2 + ∥∇divW∥2
L2 = −

∫
R3

U · ∇W · ∆W dx

+
∫
R3

2(∇ × U) · ∆W dx

= X3 +X4. (2.7)
Thirdly, testing (1)3 with ∆V, and employing the divergence-free conditions, results in∫

R3
Vt · ∆V dx+

∫
R3

U · ∇V · ∆V dx−
∫
R3

V · ∇U · ∆V dx+
∫
R3

(−∆)γV · ∆V dx = 0

1
2
d

dt
∥∇V∥2

L2 + ∥Π1+γV∥2
L2 = −

∫
R3

U · ∇V · ∆V dx+
∫
R3

V · ∇U · ∆V dx

= X5 +X6. (2.8)
Now, adding (2.6), (2.7), and (2.8), we have

1
2
d

dt

(
∥∇U∥2

L2 + ∥∇W∥2
L2 + ∥∇V∥2

L2
)

+
(
∥Π1+αU∥2

L2 + ∥Π1+βW∥2
L2 + ∥Π1+γV∥2

L2
)

+4∥∇W∥2
L2 + ∥∇divW∥2

L2 =
6∑

i=1
Xi. (2.9)
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Next, we need an estimate for each of Xi appearing in (2.9). For X2, we derive

|X2| ≤
∫
R3

|∇U|3 ≤ C∥∇U∥L2∥∇U∥2
L4 .

Here, employing (2.2), we get that

|X2| ≤ C∥∇U∥BMO∥∇U∥2
L2 . (2.10)

Using (2.3) and the following inequality:

∥∇U∥Ḃ0
∞,∞

≤ C∥Ω∥Ḃ0
∞,∞

,

the above inequality (2.10) yields

|X2| ≤ C∥∇U∥2
L2

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
log(e+ ∥U∥Hs)

≤ C∥∇U∥2
L2

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
log(e+ λ(t)), (2.11)

where λ(t) := supT∗≤s≤t∥ΠsU∥2
L2 + ∥ΠsW∥2

L2 + ∥ΠsV ∥2
L2 . For the detailed reasoning and

proven bounds on s = 3, see [14].
Next, we get bounds for X1

|X1| ≤
∫
R3

|∇V|2 · ∇U dx.

Now, using Hölder’s inequality with 1
2 + 5

12 + 1
12 = 1,

|X1| ≤ C∥∇U∥L2∥∇V∥L12∥∇V∥
L

12
5
,

which in view of Sobolev inequalities gives

|X1| ≤ C∥∇U∥2
L2 + C∥ΠγV∥2

L2 + C∥ΠγV∥2
L2∥∇U∥2

L2 + C∥Π1+γV∥2
L2 + C. (2.12)

Following the same steps as taken for X1, the estimates for X5, X6, and X3, are given as

|X5| = |X6| ≤ C∥∇U∥2
L2 + C∥ΠγV∥2

L2 + C∥ΠγV∥2
L2∥∇U∥2

L2 + C∥Π1+γV∥2
L2 + C (2.13)

|X3| ≤ C∥∇U∥2
L2 + C∥ΠβW∥2

L2 + C∥ΠβW∥2
L2∥∇U∥2

L2 + C∥Π1+βW∥2
L2 + C. (2.14)

Lastly, for X4, we obtain
|X4| ≤ C∥∇U∥L2∥∆W∥L2

≤ C
(
∥∇U∥2

L2 + ∥∇W∥2
L2 + ∥Π1+βW∥2

L2

)
. (2.15)

Putting (2.11), (2.12), (2.13), (2.14), and (2.15) in (2.9), after arranging and conserving
norms we have that

1
2
d

dt

(
∥∇U∥2

L2 + ∥∇W∥2
L2 + ∥∇V∥2

L2
)

+
(
∥Π1+αU∥2

L2 + ∥Π1+βW∥2
L2 + ∥Π1+γV∥2

L2
)

+4∥∇W∥2
L2 + ∥∇divW∥2

L2

≤ C∥∇U∥2
L2

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
log(e+ λ(t)) + C

(
∥∇U∥2

L2 + ∥∇W∥2
L2

)
+C∥ΠγV∥2

L2∥∇U∥2
L2 + C∥ΠγV∥2

L2 + C + C∥ΠβW∥2
L2 + C∥ΠβW∥2

L2∥∇U∥2
L2 + C.
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Continuing the same methodology as above, we apply the Gronwall’s inequality to obtain

∥∇U∥2
L2 + ∥∇W∥2

L2 + ∥∇V∥2
L2 +

∫ T

0
∥ΠαU∥2

L2 + ∥ΠβW∥2
L2 + ∥ΠγV∥2

L2 + ∥Π1+αU∥2
L2

+∥Π1+βW∥2
L2 + ∥Π1+γV∥2

L2 dt

≤ C0 exp
(
C

∫ T

T∗

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
dt(1 + ln(e+ λ(t))

)
≤ C0(e+ λ(t))Cϵ, (2.16)

Where C0 =
(
∥∇U(·, T∗)∥2

L2 + ∥∇W(·, T∗)∥2
L2 + ∥∇V(·, T∗)∥2

L2 + 1
)

and for infinitesimally
small constant ϵ > 0, ∃ T∗ < T , such that∫ T

T∗

(
1 +

∥Ω∥Ḃ0
∞,∞√

1 + log(e+ ∥Ω∥Ḃ0
∞,∞

)

)
dt < ϵ.

The bounds for λ(t), and for
(
∥ΠαU∥2

L2 +∥ΠβW∥2
L2 +∥ΠγV∥2

L2 +∥Π1+αU∥2
L2 +∥Π1+βW∥2

L2 +

∥Π1+γV∥2
L2

)
are elaborately proved in [3].

For the L2 bounds, taking inner product of U with (1)1, W with (1)2, and V with (1)3,
estimating all the terms and adding, it is easy to see we get that

∥U∥2
L2 + ∥W∥2

L2 + ∥V∥2
L2 +

∫ T

0

(
∥ΠαU∥2

L2 + ∥ΠβW∥2
L2 + ∥ΠγV∥2

L2
)
dt ≤ C. (2.17)

Hence, (2.16) together with (2.1) and (2.17) results in the following inequality:

∥∇
(
U,W,V

)
∥2

L2 ≤ C.

By controlling one of the geometric constraints of vorticity in regular homogeneous Besov
spaces we proved our solutions will keep their blow-up until reaching singular time. □

2.2. Gradient velocity regularity result. This section is concerned with demonstrating
gradient velocity regularity in the critical Besov spaces.

Theorem 2.2. Suppose (U0,W0,V0) ∈ Hn(R3) with n > 5
2 and ∇ · U0 = 0, ∇ · V0 = 0

in distributional sense. If a weak solution (U,W,V) of system (1.1) satisfies the following
condition for gradient velocity∫ T

0

∥∇U∥2
Ḃ−1

∞,∞

{
1 + log(e+ ∥∇U∥Ḃ−1

∞,∞
)}dt < ∞, (2.18)

then it retains its regularity in the interval R3 × [0, T ].

Proof. To prove result (2.18), we continue from equation (2.9). Using (2.4), we get new
estimates for X2

|X2| ≤ C∥∇U∥L2∥∇U∥2
L4

≤ C∥∇U∥2
L2∥∇U∥2

Ḃ−1
∞,∞

+ ∥∆U∥2
L2 .
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All the other estimates Xi’s are evaluated in a way similar to the previous result. Putting
all the new estimates in (2.9) and following on the same steps as for (2.16), we have that

∥∇U∥2
L2 + ∥∇W∥2

L2 + ∥∇V∥2
L2 +

∫ T

0
∥ΠαU∥2

L2 + ∥ΠβW∥2
L2 + ∥ΠγV∥2

L2 + ∥Π1+αU∥2
L2

+∥Π1+βW∥2
L2 + ∥Π1+γV∥2

L2 dt

≤ C0 exp
(
C

∫ T

T∗

(
1 +

∥∇U∥2
Ḃ−1

∞,∞

1 + log(e+ ∥∇U∥Ḃ−1
∞,∞

)
)
dt(1 + ln(e+ λ(t))

)
≤ C exp(C0ϵ ln(e+ λ(t))) ≤ C0(e+ λ(t))Cϵ. (2.19)

Whereas, for ϵ > 0, ∃ T∗ < T , such that∫ T

T∗

(
1 +

∥∇U∥2
Ḃ−1

∞,∞

1 + log(e+ ∥∇U∥Ḃ−1
∞,∞

)
)
dt < ϵ.

Now, (2.19) together with (2.18) shows that for a finite time the solution remains regular. □

Corollary 2.1. The fact ∥∇U∥Ḃ−1
∞,∞

≈ ∥U∥Ḃ0
∞,∞

implies the new improved result for (1.1)
via velocity constraint ∫ T

0

∥U∥2
Ḃ0

∞,∞

1 + log(e+ ∥U∥Ḃ0
∞,∞

)dt < ∞. (2.20)

3. Conclusions

This work employs the functional theoretical approach to the system (1.1) to prove
two new geometric constraints. Considering its structural properties, these constraints are
vital for analyzing the turbulence over a finite time interval for a possible blow-up. The
results (2.5), (2.18), and (2.20) are proved in Besov spaces that are important due to their
complexity and scale-invariant properties. Although NSE has been extensively analyzed for
finite time regularity or partial regularity (the regularity of the singular sets), the detailed
regularity and partial regularity analyses of the well-posedness of systems (1.1) are missing
from the literature. Until now, a few regularity results for (1.1) in Lebesgue spaces, BMO,
and Besov spaces have been obtained; the better results should be presented on this system.
The proposed future problems related to the system (1.1) include the improved results of
component reduction regularity in terms of velocity and pressure. We can improve the
already proven results by simply presenting the regularity condition on one component of
velocity, i.e., U1, in more regular function spaces. Similarly, we could improve the gradient
velocity result in more general function spaces.

References
[1] F. Bensaid, M. Moussai, Realizations of the homogeneous Besov-type spaces, Methods and Applications

of Analysis, 26(4) (2019), 349–370.
[2] L. Deng, H. Shang, Global well-posedness for n-dimensional magneto-micropolar equations with hyperdis-

sipation, Applied Mathematics Letters, 111 (2021), 106610.
[3] J. Fan, X. Zhong, Regularity criteria for 3D generalized incompressible magneto-micropolar fluid equations,

Applied Mathematics Letters, 127 (2022), 1–5.



GEOMETRIC CONSTRAINTS FOR REGULARITY 29

[4] J. Fan, S. Jiang, G. Ni, On regularity criteria for the n-dimensional Navier-Stokes equations in terms of
the pressure, Journal of Differential Equations, 244(11) (2008), 2963–2979.

[5] J. Fan, Y. Fukumoto, Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-
Stokes and related equations, Kinetic and Related Models, 6(3) (2013), 545–556.

[6] C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation, Millennium Prize Prob., 57
(2000), 67.

[7] C. Fefferman, E. M. Stein, Hp spaces of several variables, Acta Math., 129 (1972), 137–193.
[8] E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen, Mathematische

Nachrichten, 4 (1950), 213–231.
[9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations,

Elsevier, 204, 2006.
[10] H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity

criterion to some semi-linear evolution equations, Mathematische Zeitschrift, 242 (2002), 251–278.
[11] H. Kozono, Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Mathematische

Zeitschrift, 235 (2000), 173–194.
[12] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63 (1934), 193–248.
[13] Y. Meyer, P. Gerard, F. Oru, Inégalités de Sobolev précisées, Séminaire Equations aux dérivées partielles

(Polytechnique), 4 (1996-1997), 1–8.
[14] M. Naqeeb, A. Hussain, A. M. Alghamdi, An Improved Regularity Criterion for the 3D Magnetic Bénard

System in Besov Spaces, Symmetry, 14(9) (2022), 1918.
[15] J. C. Robinson, J. L. Rodrigo, W. Sadowski, The three-dimensional Navier- Stokes equations: Classical

theory, Cambridge University Press, 2016.
[16] P. Penel, M. Pokorny, Some New Regularity Criteria for the Navier-Stokes Equations Containing Gra-

dient of the Velocity. Applications of Mathematics, 49 (2004), 483–493.
[17] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational

Mech. Anal., 9 (1962), 187–195.
[18] S. Yan, X. Chen, Regularity criterion for the 3D magneto-micropolar fluid flows in terms of pressure,

Journal of Nonlinear Evolution Equations and Applications, 2022(7) (2023), 127–142.
[19] H. Qiu, C. Xiao, Z. A. Yao, Local existence for the d-dimensional magneto-micropolar equations with

fractional dissipation in Besov spaces, Mathematical Methods in the Applied Sciences, 46(8) (2023),
9617–9651.

1Department of Mathematics,
Quaid-I-Azam University 45320,
Islamabad, Pakistan
Email address: a.hussain@qau.edu.pk

1Department of Mathematics,
Quaid-I-Azam University 45320,
Islamabad, Pakistan
Email address: mnaqeem@math.qau.edu.pk


	1. Introduction of the problem
	2. Main Results and Their Proofs
	2.1. Beale-Kato-Majda type regularity result
	2.2. Gradient velocity regularity result

	3. Conclusions
	References

