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INEQUALITIES FOR COMPLETELY MONOTONIC DEGREES OF
FUNCTIONS INVOLVING GAMMA AND POLYGAMMA FUNCTIONS

HESHAM MOUSTAFA!

ABSTRACT. We are interested in finding some completely monotonic functions containing
the gamma, digamma and polygamma functions. As a consequence, we deduce some new
bounds for the gamma, digamma and polygamma functions, which refine recent results.

1. INTRODUCTION

Special functions have numerous applications in fluid dynamics, electrical current, solu-
tions of wave equations and heat conduction. At the heart of the theory of special functions

lie the gamma and the psi functions. The gamma function was introduced by Euler [19] as:
x
I'(z)= lim —; , x>0
s=1
which satisfies
r(
UED _pe), w00 (11)

and it has the following asymptotic formula [1]:

InT'(z) ~InvV2r — 2z + (m - 2) Inz + ; 22— 1) 221 x — 00. (1.2)

where By; are the Bernoulli numbers. The digamma v(z) and polygamma ("™ () functions
are given by [1]:

d > e(=z+1)
w(x)—%lnr :Zmﬂ— f—/ (tet_ _1>dt, x € (0,00) (1.3)

=1
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where v ~ 0.5772156649 is Euler-Mascheroni’s constant, and

©  1\14+m | oo (_1\1+m tm (—z+1)t
1/] (‘T) Z (Z + x)l-i—m 0 et —1

=0

dt, x>0, meN (14)

and they have the functional equation:

(=)™ ml!
pl+m

P (2 4+1) = +¢™(z),  m=0,1,2--. (1.5)

The digamma v (z) and polygamma (" () functions have the following asymptotic formu-
las [1]:

1 e Bs;
=1

and for s € N,

R

" i=1
For extra information about this topic, see [12,13,22]. A function F' defined on an interval
I is completely monotonic if it satisfies that
(=1)™F™)(z) >0 rel; m=0,1,2,....

The necessary and sufficient condition for F'(z) being completely monotonic for z > 0 is
that [21]:

F(z) = /OOO e du(t),

where v(t) is non-negative measure on ¢ > 0 such that the integral converges for z > 0

Let F(z) be a completely monotonic function for z > 0 and suppose the notation
F(o0) = xlggo F(x). If 2°[F(z) — F(o0)] is a completely monotonic function for x > 0
if and only if ¢ € [0,d], then the number § € R* is called the completely monotonic
degree of F(x) for z > 0 and denoted by deg¢,,[F(z)] = d. For more information, see
[6,8, 14-18,24]. The polygamma functions Pp(m) (z) are strictly completely monotonic on
(0,00) when m = 1,3, --- , and so are —)("™) (z) for m = 2,4,--- .

Alzer and Batir [2] showed that the function
1
Hw(:v):zfxln$+lnlj(x)fln\/27r+§¢(w+x), x>0;w>0

is completely monotonic on (0, c0) for w > % and so is the function —Hp(z). As a conse-
quence, the following inequalities are deduced:

exp[—x—%/}(x%—%)} < \/Iz;flx <exp[—x—%¢(w)}, x>0 (1.8)

%wl (ZL‘ + ;) < —t¢(x)+Inx < %?Z)/(.T), x>0 (1.9)
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and form =2,3,---,

D™ ) (24 5) < C0m ) - (m=2 ("™ ), 2>

2 3 zm—1 2
(1.10)
In 2008, Batir [1] refined (1.8) by:
1 4 INED 1 1
exp [—x— iw(x) e 1)} < o < exp [—x— §¢(x) - G—x}j x>0. (1.11)

In 2011, Sevli and Batir [20] proved that the function
1 1
Fy(x) =z — (x - 2) Inz+InT'(z) —Inv2r — ﬁq//(x +v), x>0,v>0

is completely monotonic on (0, 00) for v > 1 and so is the function —Fy(z). As a consequence,
the following inequalities are deduced:

1 1 1 T 1 1
ﬁeXP{_$+E¢/ <m+2>} < %25:63:% < ﬁexp[—or%—ﬁiﬁ/(a:)], r>0 (1.12)
1 1 1 1 1
9 Ez//’ (:I: + 2) < —=Y(z)+lnx < % " E?ﬂ"(x), x>0 (1.13)

and form =2,3,--- and x > 0,

(m — 1)' n (_1)m,¢(m+1) (.T + 1) < (_1)mw(m—1)($) . (T)’L - 2)' (m - 1)'

<
2rm 12 2 xm—1 2xm

+ (_112)m1/)(m+1)($). (1.14)

After that Batir [5] presented some sharp bounds for the psi function:

1 1 1
fln(xz—l—a:—i—e_%) §¢(1+x)<§ln(x2+a:+f), z € (0,00) (1.15)

2 3
which can be written as:
1 1 1 1 1 1 1 e

Recently many mathematicians studied the k- generalized gamma and polygamma func-
tions, where k > 0, and the p- generalized gamma and polygamma functions, where p € N.
They deduced some new conclusions about the ordinary gamma and polygamma functions
and some new proofs of theirs established conclusions when k& approaches to one or p ap-
proaches to infinity. The previous results were generalized in [7,9-11,23].

We will introduce three completely monotonic functions involving I', 1 and ¢'. Also, we
will investigate their completely monotonic degrees on (0, 00). As a consequence, some new
bounds for T' and 4™ (m € NU{0},) will be deduced, which refine the previous results.
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2. AUXILIARY RESULTS
The following corollary [18] will be used in proving some next results:

Corollary 2.1. Suppose that L is a real-valued function defined on x > xg, xg € R with
L(z) tends to zero as x — oo. Then for r € (0,00), L(z) > 0, if L(r + z) — L(z) < 0 for
all x > xg and L(z) <0, if L(r +x) — L(x) > 0 for all x > x.

Lemma 2.1. The following inequalities are true:

1 1 1
y (:c + 3> Fo > )+ 3e), w222 (2.1)
zp’(x)—1> ! x> 0.9 (2.2)
T Al —5)Y o
, 1 1

1/1<a:+4>>$, 8x > 1, (2.3)

and )

—y
w/(x)_i_%w// <$+i> <;—1n<1+%+6x2 )’ x> 4. (2.4)

Proof. Letting the function H(z) = ¢ (ac + %) —(x) —%1/1’(:6)%—@ and using the functional

equation (1.5), we get

2 (24 145(2 — 2.2) 4 50(z — 2.2)?)
1222(x + 1)2(1 + 3x)

Using the asymptotic expansions (1.6) and (1.7), we have Jim H (x) = 0 and then Corollary

2.1 gives H(z) > 0 for all z > 2.2. Next, we set the function M(z) = ¢/(z) — 2 — 4(1_1%)2.

Then

—H(z)+H(z+1) =

<0, x> 2.2,

—m(z — 0.9)
22(1 + z)(—3 + 10x)%(7 + 10z)?
where 2m(z) = 1503 + 22560z + 5220022 + 4000022 + 10000z, By the same way as before,
we have (1: > 0 for all x > 0.9. After that, we suppose that the function T'(z) =
( ) — 1 and then

M(z+1) — M(z) =

<0, >09

—(8x —1)

~T(x)+T(z+1)= o(x 4 1)(1 + 4z)2

<0, 8xr > 1.

Then, we get (2.3). Finally, we set N(z) = ¢'(z) + 31" (ac + i) — 24+ (1
and by using (1.5), we get

e~ 2
2

—2n(x —4)
N'(z+1) - N'(z) =
@+ 1) =N = S 0T ) (e D 2+ D) (e D 125 30 7 a9
< 0, x >4

where

n(z) = —5353349 — 401301050¢>" + 1288306007
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> 0, z>0
and similary as before, we get (2.4). O
From (1.3) and (1.4), we have the lemma:

Lemma 2.2. Let x > 0. Then the following limits are correct:

hr%xm“w(m)(x) =(-)™"m!, m=0,1,2---, (2.5)
T—

lim ™™ (x+b) =0, meN, b>0, (2.6)
and

hr%a:m” () =0, m=0,1,2,---. (2.7)

xr—r

3. MAIN RESULTS

Theorem 3.1. Assume that x > 0. Then the function
1 1
Ug(w) = =z + c/(z) + ¢/ (@ + O + ¢(@),  £20

is completely monotonic on (0,00) if and only if £ < % The function U jo(x) satisfies that
2 < degé s |:U1/2($)} < 3.

Proof. Using the identity [!]:
oo ,—dt _ —ft
In <f> :/ E T, f,d>0 (3.1)
d 0 t
and the relations (1.3) and (1.4), we have Ug(x) = [;° %g@g(t)dt, where
2, ot
pe(t) =€ — 1 —te' + get + ge(lff)t.
Let £ < %, then we obtain
2

t2
pe(t) > e —1—te + el + ge%
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B & (T+n)[(—4+n) +2(2+n)2|
- ﬁoﬂ% 6 (n+2)!

> 0, t>0.

Consequently, Ug(z) is completely monotonic on (0,00) for ¢ < 4. Conversely, if Ug(z) is
completely monotonic, then we get for z > 0 :

> 0.

22 Ug(x) = a2 [éu/(m) F 20 @+ +9() ~Ina

Using the asymptotic expansions (1.6) and (1.7), we have

1 1 1 1y ¢,1
?M_?w+t3(:r+£)2+0(>]_ 37670

lim 22 Ug(z) = lim 2
Tr—00 T—>00

and then ¢ < 3. Furthermore, using the asymptotic expansions (1.6) and (1.7), we have
Uy 2(00) = Ilgglo Uy ja(z) = 0.

Now,

o0 T(t
z? Uija(z) = / - 1t) ; e tdt, x>0
0 12t3(ez —1)3(ez 4+ 1)3
where
Yi(t)
= 24( — 1+ 3et — 3%t + e3t> + 43 (e% — 2l — 462t — e%)
—|—t4 (e% + 2¢t + 66% + 2e2t + e%)
504¢7 N 7056¢8 N 56088t? N 33561010 N 1688049¢11 N 7554789t12 N 62219313¢13
7! 8l 9! 10! 11! 12! 2(13!)
1926695043¢14 N 14224269663t1° N 1264565324716 N 8727815155517
16(14!) 32(15!) 8(16!) 16(17")
1175490520893t 18 i L(r) g+

64(181) Gt 7Y
with
L(r) = 24(3"+ 32+ +3)
+4(r +4)(r +3)(r +2) [ (;)m —2—9rt3 <2)T+11

+(r+4)(r+3)(r+2)(r+1)

(;) +2+6 (;) +2 4 (g)}

— 24((1.5)’"*4 - 3)2”+4 + 724 (r+4)(r+3)(r+2)|(r+3) (;)r +2(r — 3)
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F2 L (r —15) 4 (r — 9) (;) +6(r+1) (;”
> 0, r>15.

Then, 2 < degé {Ul/z(.’[})] . However,

z3 Uyija(z) = / - T2(t) - e Tt x>0
0 24t*(ez — 1)4(e2 +1)*

where

To(t)
= 14 1) —eF (=64 1)tt —er (64 1)tt —eF (—30+231)1" — % (30 +23¢)¢!

—4e3t( 144 — 9t ¢ t5) — 1662 (54 — 6ttt t5) _ 4et< 144 — 384 t5)

with T(3.5) = 686947 and Y5(3.6) = —1.29751(10°). Then 2* U; 5(x) is not a completely
monotonic function and hence degé,, [Ul /2 (x)} < 3. O

Theorem 3.2. Suppose that x > 0. Then the function
1 1
Va(x) =Inv2r —InT'(z )—Ew(x)—x+xlnx—éw'(:v+a), a>0

is completely monotonic on (0,00) if and only if o > 3. Also, —Vy(z) is CM on (0,00) if
and only if a = 0. The functions Vy,4(x) and —Vo(z) satisfy that 1 < degg:y, {‘/1/4(3;)} <2
and 2 < degé s [—Vo(2)] < 3.

Proof. Using Binet’s first formula [3]:

1 o0 1
lnf(x):(x—)lnx—x+ln\/2ﬂ'+/ [ ;
2 0 et —

we get

e—xt
173 + ] dt, x>0 (3.2

= e i) Bt~ [T 3]

and by using (1.3), (1.4) and (3.1), we have Vy(z) = [5° W v (t)dt, where

2,
0at) = —1 —te! + —e - ge(l_o‘)t.
Let a > i, then we obtain
t2 t3 34 >
alt) > el —1—tel + Ee — —eZ Z tr+3 >0,
where
4" "
f(T’) —4" 3" _ 7“3r_1 — Z (78") 3r=s > Q.

3(r+2)(r+1) =
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Consequently, V(z) is completely monotonic on (0,00) for v > 1. Conversely, if V(z) is
completely monotonic, then we get for z > 0 :

1

22 Vy(z) = 22 [VO(:E) + g(wl(x) — ' (z + a)) > 0. (3.3)

_1

5 and

Using the asymptotic expansions (1.2), (1.6) and (1.7), we have li_>m 22 Vo(z) =
r—>00

lim 22 [w’(x) - (z+a)

T—00

= a. From (3.3), we conclude that —3; + ¢ > 0 and then o > 1.

Now for @ = 0, we have

B © gt . r(r 4+ 1)(r +2)t7 3
Vole) = - | 2 1) <Z 6 (r 1 3)! )dt

r=1

and consequently, —Vj(z) is completely monotonic on (0, 00). Conversely, we assume that
—Va () is completely monotonic on (0, 00) with a > 0, then

x Vo(z) <0, x>0, a>0. (3.4)

Using functional equation(1.1) and the relations (2.5) and (2.6), we get liH(I){L' Val(z) =1 >
r—r

0 and this contradicts with (3.4) and hence o« = 0. Furthermore, using the asymptotic
expansions (1.2), (1.6) and (1.7), we have

Vija(o0) = lim Vy4(z) = 0.

Now,

0 Ts(t

T V1/4(:c) = / 0 32( ) T e T, x>0
0 24t3(ex —1)%(e1 +1)%(e2 +1)2

where

Ta(t) = 48(—1+2¢' — ) 424t — el + ) + 2u¢%e!
+4¢3 (e% — 3¢t — e%) + t4(36% + e%>
3t6 31T 34148 328311¢°  2245743t10 i S(r)

20 T 160 T 2688 T 16(9)) 320100 — (1 +4)!

with
S(r) = 24r(27F — 1) +24(r + )3 +7) + 34+ )3+ )2+ 1) <3)

4
-0 (3) -]

+(r+4)(r+3)(r+2)

> 0, r>T.
Then, 1 < degéy, {‘/'1/4(33)} . However,

Ya(t
4t( ) - e "tdt, x>0

2
z°V x —/
1/4( ) 0 96t4(e£ — 1)3(61 + 1)3(65 + 1)3
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where
Yu(t)
= =576 —192¢¥ (=34 ¢) — i (= 8+ 1)t' — Bt} (8+3t) — 27t} (— 8+ 11¢)
+486% (= 36 + 8t — 47 — 2% + ) + 48¢" (36 — 4t + 4¢> — 263 4 1)
with T4(6) ~ 4.24(10%) and T4(6.1) ~ —1.49(10%). Then 2 V;/4(x) is not a completely

)
monotonic function and hence deg¢:ys | V1 /4(x ] < 2. We also have
~Vo(o0) = = lim Vo(w) = 0
and
—2® Vo(x e dt 0
o Vol / 6t4(et —1)3 et - 1 ’ v

where
Ts(t) = 36(1— 3¢+ 3% — ™) 12t (e — 2% 4 ) +1262(e2 — ') 4 617 (¢! + ¥
¢ (et + 5e2t) + 4 (et + th)

3t7 8 X Dr
= 5t 1 +§ D) s g
7“
r=4
with

D(r)
= (3888 + 606(—4 +7) 4 647(—4 +7)% +209(—4 + )3 + 25(—4 + )t 4+ (=4 + 7‘)5> 2

+4(—4 4 7r)3"T° 472 + 3067 + 214r% + 773 + 140t 410
> 0, r > 4.
Then, 2 < deg¢ ;s [—Vo(z)] . However,

—z3 Vo(z / 6t5 et = 1 e Ty, x>0
where
To(t) = 144—36¢"( —4+t) — e (576 — 36t + 3612 — 18¢> + 611 + 1)
€™ (576 — 108t + 3612 + 18t + 6 — 61° + 1°)
—4e2t( — 2164 27t — 182 + 614 — 3¢5 + tG)

with T(0.8) = 0.000141185 and Y¢(0.9) = —0.00773072. Then —z3 Vp(x) is not a com-
pletely monotonic function and hence degé,, [Vo(z)] < 3. O

Theorem 3.3. For x > 0 and 8 > 0, the function

Wale) = Inv/2r I T(a+ §) ~ (24 6) + o+ B) In(a+8) — (e -+ ) — o/ (e +6) +

1
2422
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is completely monotonic on (0,00) if and only if B > i Also, —Wpg(x) is completely
monotonic on (0,00) if and only if B = 0. The functions Wg/lo( x) and —Wy(z) satisfy that

1< degty [Wayno(@)] < 2 and 2 < degfy [~ Wo(a)] < 3.

Proof. Using (1.3), (1.4), (3.1), (3.2) and the identity - = ﬁ Jo t " temtdt for x > 0,

(see [1]), we have
- 0o e—(w—i—ﬁ)t 0 J
5(95)—/0 2 —1) p(t)dt,

where , , ,
t t t
b1 _ Lot v h _ Bt
Qs(t) =€ —1 te—|—2e 5 € +24<e 1)
Let 6 > E’ then we obtain
t2 3,
Qs(t) > e — 1 —te +§€ _Ee + 24(@% —e%)
and hence
17t° 41t7 . B(r
() 2 13300 * 12000 T 25 24 (3 + >0,
where
a0 o) - (o)
—— = —4r+(r+3)
(r+2)(r+1)

( r
_ 3(r—=>5)(r—2) (""‘1‘3):2§( ) (130>T—s

> 0, r > 5.

Consequently, Ws(z) is completely monotonic on (0,00) for 8 > . Conversely, if Wz(z)
is completely monotonic, then we have Wg(x) > 0 for > 0 and by using the asymptotic
expansions (1.2), (1.6) and (1.7), we have

1 1 1 1
T ok 3 _ _ -
Jim 2® W(w) v (24952 2(z + B)2  40(x + B)3 O (az4)>

_ s 1
12 40
> 0

and then 8 > 5. Now for 8 = 0, we have

_ e (“1+r)A+7m)2+7) 54,
Wi(o) == | 2l — 1) (; seal L ) .

Consequently, —Wy(x) is CM on (0,00). Conversely, we assume that —W3(z) is CM on
(0, 00) with 8 > 0, then

? Wg(x) <0, x>0, B>0. (3.5)
Using the relations (1.3) and(1.4), we get ili% z® Ws(z) = 55 > 0 and this contradicts with
(3.5) and hence g = 0. Furthermore, using the asymptotic expansions (1.2), (1.6) and (1.7),
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we have
Wi3/10(00) = gﬁh_{glo W3/10($) =0.
Now,
3t gl(t) 1
o 1 =t L
T W3/10($) - / S e 102_1)2(610 ) 3 e "dt, x> 0
0 t t 3t 2t t t 3t 2t
(1—@10 + e5 —e10 —|-e5> <1—|-elo +e5 +e10 —|—e5)
where
o1(t) = 240( =1+ 2¢" — ) +12¢( — 3 — de' + Te™) + 1202(Te" + 3¢¥)
+13 (5010 — 22¢' — 10eT0 — 38¢ + 5e10 ) + 2t4(Te’ + 3¢
o N 4769t° N 3584529t” N 86234877t N 7069861887t N 65056576899¢12
40 8400 25(9!) 125(10!) 2500(11!) 6250(12!)
17736838749981¢13 i L(r) ria .
500000(13!) S (- 4)!
with
L(r) = 27*1( =552+ 2r — 165r% — 8r® + 3r*) + 2(552 + 3347 + 1882 + 59r% + 7r?)
5(7" + 4) (7’ + 3) (T + 2) r—+1 r+1 r—+1
- o (371 = 2(13"*1) + 237+1)

= orf! [4968 +6302(r — 10) + 1395(r — 10)* + 112(r — 10)* + 3(r — 10)41

5(r4+4)(r+3)(r+2)
107+1

r+1
3 4 137(10r — 3) + ) (le) (13’““5)105]
s=2

+2(552 + 3347 + 18872 + 5913 + 7r4)
> 0, r>10.

Then, 1 S deg%M |:W3/10(.I):| .
But,
3t gz(t) t

o0 1 L L

2® Wyp0(x) = / 6006 X0 (e T0 D eT0 +1)* 5 e dt, x>0
t i 3t 2t T t 3t 2t
<1—€10 + e5 — e10 —|—65> (14—@10 + e5 + e10 +65)
where
oa(t) = —18(200+ 40t + 317 + €' (10800 + 960t + 10026 — 2941 + 7" — 49¢°)

1edt (3600 _ 480¢ — 3062 — 543 4+ 871 — 9t5)

—2¢e2t (5400 — 120t + 32112 + 42613 — 253t + 71755)
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with 02(8.4) = 1.61227(10™) and 02(8.5) = —2.14035(10'). Then z* Ws,10(z) is not a
completely monotonic function and hence degé,, [Wg /10(1’)] < 2.

Also,
Wo(o0) = Jim Wo(z) =
And
o 7mt
22 Wo(z / 6t4et—1 dt, x>0
where

Ar(t) = 36(1— 3¢’ +3e2 — &™) 4126 (! — 267 4 ) 41262 — ' 4 )
+6¢3 (et + eZt) _ t4(et + 5€2t) 445 (et + th)

3t7 t8 59t9 s
+Z

t7‘+5 0
20 >

with

A(r) = 27 [3888 4+ 606(—4 + 1) 4+ 647(—4 +7)% +209(—4 + 1) + 25(—4 + 1) 4+ (=4 +7)°

+4(—4 4+ 7)3"° 472 4 3067 + 21472 + 7713 + 147 4 5
> 0, r > 4.

Then, 2 < degéy; [~Wo(x)]. However,

—at
— Wo(z / 6t5 et—l e~ "tdt, x>0
where
4 3 2
As(t) = 144(—1+¢') =36 (—1+e)t—36e'(—1+e) ¢ —18¢" (=14 )ed

—6e’ (1 + 4e! + 62t>t4 + 6e* (2 + et)t5 — et(l + 4e! + th)tG
with A2(0.8) = 0.000141185 and A2(0.9) = —0.00773072. Then —z3 Wy(x) is not a com-
pletely monotonic function and hence degé,, [—Wo(z)] < 3. O

4. SOME NEW INEQUALITIES FOR THE I',7) AND (™) FUNCTIONS

From Theorem 3.1, we have the corollary:

Corollary 4.1. Forz >0 and 0 < ¢ < 1, we have
1 1
—(x) +lnx < éwl(m) + gw’ (x+¢&), (4.1)
and form =2,3,---, we have

(1) - 2R (—13;”+1
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Remark 4.1. e Using the decreasing property of the function ¢’(z) on (0,00), we get
Y'(2) > ¢/ (z+¢) for 0 < € < 1 and then the upper bound of (4.1) refines the upper
bound of (1.9) for every x > 0.

e Using the completely monotonic property of 1'(z) on (0, 00), we get
(=1 M) (z) < 0 for all m € N U {0} and then (—1)"+1(™) (2 4+¢) <
(=)™ (z) for 0 < € < % and this proves that the upper bound of (4.2) refines
the upper bound of (1.10) for every = > 0.

From Theorem 3.2, we get the following results:

Corollary 4.2. Set a,b € [0,00) and z € (0,00). Then

exp {— x — %w(aﬁ) - éw'(a: + b)} < \/l;éf)mx < exp {— x — %w(fﬂ) - éw'(ac + a)] (4.3)

with the best constants a = i and b= 0.

Proof. The right-hand side of (4.3) is equivalent to 2% V,(z) > 0 and this leads to a > 7 as
stated in the proof of Theorem 3.2. Using the decreasing property of the function ¢’(z) on
(0,00), we get —¢/(z + 1) < —¢/(z +a) for a > 1 and then a = } is the best constant in
(4.3). Also, Theorem 3.2 gives the left-hand side of inequality (4.3) for b = 0. If there exist
b > 0 such that left-hand side of (4.3) is valid for = € (0, c0), then we would have

]Ilir%xlnf(x) > lim |2?Inz — 2% + zln V27 — g¢(5€) - %W(aj +b)
H

z—0

and using (2.5) and (2.6), we have lim zInT'(z) > 3, which contradicts that lim zInT'(z) = 0
z—0 z—0

and then b = 0 is the best constant in (4.3). O

Remark 4.2. Using the completely monotonic property of ¢'(x) on (0, ), we deduce
that the upper bound of (4.3) refines the upper bound of (1.8) for every x > 0.
Using (4.1) at £ = i, we conclude that the upper bound of (4.3) refines the upper
bound of (1.12) for every xz > 0.
Using (2.3), we deduce that the upper bound of (4.3) at a = % refines the upper
bound of (1.11) for every z > 2.

Corollary 4.3. Set a,b € [0,00) and z € (0,00). Then

1 1 1 1

iw'(w) + 61b/,($ +b) < —(z)+Inz < iw’(x) + gw"(x +a) (4.4)
with the best constants a = i and b= 0.

Proof. The right-hand side of (4.4) is equivalent to V(z) < 0 and hence

3V (x) = 2® lVO’(:L") + é(?l}”(l') — " (z + a)) <0. (4.5)

Using the asymptotic expansions (1.6) and (1.7), we have 2?h_g)lo z? V§(z) = 75 and

= —2a.
Tr—r0o0

lim 23 [1/)”(56) — " (x4 a)
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From (4.5), we conclude that &5 (—4a+1) < 0 and then a > 1. Using the increasing property
of the function ¢ () on (0, 00), we deduce that a = 1 is the best possible constant in (4.4).
Also, Theorem 3.2 gives the left-hand side of inequality (4.4) for b = 0. If there exist b > 0
such that the left-hand side of (4.4) is valid for x € (0, 00), then we would have

1 1
T L2 Lo 200
syl el > g gy + G eyt )
and this leads to
1 1
N 2 o 2.7 - 2,11
igr(l)z:¢(:n)>2i1§%)x¢(:ﬂ)+6il_r{%)xw(a:+b). (4.6)
From (2.5), (2.6) and (2.7), we have lir% r2p(x) = 0 and
r—
1 lim 2% () + ! lim 229" (2 4 b) = =
2 z—0 6 z—0 2’
which contradict with the inequality (4.6). Hence the best constant is b = 0. U

Remark 4.3. Using the completely monotonic property of —i”(x) on (0,00), we
deduce that the upper bound of (4.4) refines the upper bound of (1.9) for every
x> 0.

Using (4.2) at & = % and s = 2, we conclude that the upper bound of (4.4) at
a= % refines the upper bound of (1.13) for every x > 0.

Using (2.4), we conclude that the upper bound of (4.4) at a = % refines the upper
bound of (1.16) for every = > 4.

Corollary 4.4. Set a,b € [0,00),z € (0,00) and m =2,3,--- . Then

(=)™ (=pm+ (m —2)!
5 w( )(x) + G g

_1\m+1
< Ungw(m)(x) +

with the best constants a = % and b= 0.

M (z 4+ b) < — + (=1)mpm=l ()

(_1)m+1

g Y (2 + a) (4.7)

Proof. The right-hand side of (4.4) is equivalent to (—1)™ (m) () >0 for m =2,3,---,
and hence

(_1)m L2 [¢(m+1)(x) _ ¢(m+1)(x + a)]

(_1)m $m+2VCL(m)($) _ + (_1)m $m+2 Vvo(m)(ﬂf)

6
> 0. (4.8)
Using the asymptotic expansion (1.7), we have lim (—1)™ M2 Vo(m)(x) =— (m;;ll)! and

=(m+1)!a.

T—r00

lim (_l)m xm+2 lw(erl)(x) - w(erl)(m + a)

From (4), we conclude that %(—1 +4a) > 0 and then a > 7. Using the completely

monotonic property of —”(z) on (0, 00), we deduce that (—1)™*! 1(m+2)(z) > 0 on (0, c0),
and then (—1)"*+! ¢ (™+1) () is increasing on (0, 0), and hence a = 1 is the best constant
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n (4.4). Also, Theorem 3.2 gives the left-hand side of inequality (4.4) for b = 0. If there
exist b > 0 such that the left-hand side of (4.4) is valid for € (0, 00), then we would have

(m — 2)!} S (—1)m+1

lim 2™ [ (—1)™ ™" () — lim 2™+ (™) (z)

z—0 gm—1 z—0
(71)m+1 : m+1 ) (m+1)
+T ilg% x 0 (x +0b)

which leads to

m~+1
_1\ymo; m+1,/(m—1) (_1 : m+1 ,/(m)
(=1)™ lim 2™ (2) > —— lim 2™ " ()
+ﬂ lim 2™ ™) (2 4 b) (4.9)
6 z—0 ’ ’

By using (2.5), (2.6) and (2.7), we have lin%)a:m“w(m*l)(m) =0 and
r—r

(_1)m+1 _1\ym+1 m)

. m+1 ;. (m) ( ) . m+1 ) (m+1) _ — L
STt ot )+ C T i gt g0 ) = g,
which contradict with the inequality (4). Hence the best constant is b = 0. O
Remark 4.4. e Using the completely monotonic property of ¢'(z) on (0,00), we get

(—1)m*1 p(m+D) (z) < 0 and then the upper bound of (4.4) refines the upper bound
of (1.10) for every m = 2,3,--- and = > 0.
e The relation (4.2) can be written as:

(mx:nl)! ) (_é)m¢(m+1)($) n (_;’)mw(m—i—l) <$ + i) , m e N

(~1)™ ™ ()

and this proves that the upper bound of (4.4) at a = i improves the upper bound
of (1) for all m =2,3,--- and = > 0.

From Theorem 3.3, we get the following results:

Corollary 4.5. Set a € [0,00) and x € (0,00). Then

1 1, 1 I'(z) 1 1, 1
exp [ —@ = 51(@) — ¥ (0)+ 51| < SE o < e [—w - gv@) - g @)+ g
(4.10)
with the best constant a = 1%, where the upper bound is valid for x > a and the lower bound

is valid for x > 0.

Proof. The right-hand side of (4.10) is equivalent to 23 W, (x) > 0 for > 0 and this leads

to a > % as mentioned in the proof of Theorem 3.3. Using the decreasing property of the

function y% on (0,00), we deduce that a = -3 is the best possible constant in (4.10). The

left-hand side of (4.10) is equivalent to Wy(x) < 0 in Theorem 3.3. O
Remark 4.5. e The lower bound of (4.10) refines the lower bound of (4.3) at b = 0 for
all z > 0.

e Using (2.1), we deduce that the lower bound of (4.10) refines the lower bound of
(1.8) for every z > 2.2.
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e Using (2.2), we deduce that the upper bound of (4.10) at a = % refines the upper
bound of (1.11) for every x > 0.9.

Corollary 4.6. Set a € [0,00) and x € (0,00). Then

@)+ @)+ :

12(x — a)?

with the best possible constants a = 1—30, where the upper bound is valid for x > a and the

< —p(z)+Inz < %w’(x) + éw’(x) + (4.11)

1223
lower bound is valid for x > 0.

Proof. The right-hand side of (4.11) is equivalent to W/(z) < 0 for > 0 and hence

z? W, (x) :x4[ln(a—|—x) —Yla+x) — %@Z)’(a—i—x) - 1Q,Z)"(a—l—cv) — <0. (4.12)

6

1223

Using the asymptotic expansions (1.6) and (1.7), we have

1 1 3 1 a 3
lim z* W (z) = lim z* — O <> =——4+ .
oo o) w00 12(x +a)® 1223 + 40(z + a)? + x® i 40

From (4.12), we conclude that a > %. Using the decreasing property of the function y% on
(0,00), we deduce that a = 1% is the best possible constant in (4.11). The left-hand side of

(4.11) is equivalent to Wj(z) > 0 in Theorem 3.3.
O

Remark 4.6. The lower bound of (4.11) refines the lower bound of (4.4) at b = 0 for all
x> 0.

Corollary 4.7. Set a € [0,00),z € (0,00) and m = 2,3,--- . Then
(=)™ o (=)™ ) (m+D! o me1yy (M= 2)!
e R o S el B
(D)™ o (D)™ sy (m+ 1)!
< 5 P (z) + 5 P (x) + A(x — )i (4.13)

with the best possible constants a = 1%, where the upper bound is valid for x > a and the
lower bound is valid for x > 0.

Proof. The right-hand side of (4.7) is equivalent to

(m —2)! +1 -1 (=1)m+t
(=)W (z) = CET ] + (=)™ D (@ 4 a) + ?w(’") (z+a)
(D)™ (m+1)!
+T¢(m )(m+a)+W>O, m=2,3,---, x>0
and by using the asymptotic expansion (1.7), we have
) M43 [ qymyp(m) _me3 (1—|—m)!7 (1+m)! B (2+m)! 1
S @ ()W @) T s T Mzt @ 80(m L aynis O\
(m+2)!(=3 + 10a)
B 240
> 0
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and then we have a > %. Using the decreasing property of the function ym% for m € N on (0, 00),

we deduce that a = -3 is the best possible constant in (4.7). The left-hand side of (4.7) is equivalent

to (—1)™ ém)(x) < 0 in Theorem 3.3. O

Remark 4.7. The lower bound of (4.7) refines the lower bound of (4.4) at b = 0 for all x > 0.

5. CONCLUSION

The main conclusions of this paper are mentioned in Theorems 3.1, 3.2 and 3.3. The
author proved the completely monotonic and the completely monotonic degree of three
functions containing the gamma, digamma and polygamma functions, and derived some
new bounds for I' and ¢(™ (m € NU {0}). These bounds refine some recent results.
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