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TWO INEQUALITIES FOR THE MEDIANS OF A TRIANGLE

JIAN LIU!

ABSTRACT. With the help of software Maple, we establish two geometric inequalities
involving medians, circumradius and inradius of a triangle. One of them is the best
possible inequality in the strong sense. We also propose four related conjectures checked
by the computer.

1. INTRODUCTION

Let ABC be a triangle with circumradius R and inradius r. Let m,, my, m. be its three
medians.

We have known a few inequalities involving mg, my, me, R and r in the literature. F. Leu-
enberger established the following linear inequality (see [!], inequality 8.2):

> ma <4R+r. (1.1)

where Y denotes the cyclic sum. Recently, the author [12] pointed that there exist a flaw
in the proof given in [1], where the proof satisfies only the case for the acute triangle. We
also gave a simple proof of this inequality in [12].

In [3], the author established the following inequality involving the reciprocal sum of
medians for a triangle:

S <)

,
In [9], the author proved the reverse inequality of (1.2):

Zi 2R5+7’ (1.3)

In [13], the author established an inequality chain including inequalities (1.2) and (1.3),

that is
2 Wq + Tq
P i m i w2 e
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22( > Zf_* Zha+18r2§ 2R+ 23r
3 mg — S\ Y heg+16r — s\ 2R+ 21r
5

-1
(6\[ O)R_2R+T

where a, b, c are the sides of triangle ABC, hg, hy, he the altitudes, wq, wp, w. the angle-
bisectors, rq,rp, 7. the radii of excircles and s = (a + b+ ¢)/2.

| \/

(1.4)

1
For the sum Z pp——— what is an inequality similar to (1.2) 7 After studying, the
m
author first found that the following inequality holds:
1 1 1
— < — 4 — 1.5
Z my + me 2R + ( )

This bring us to obtain the following stronger result:

Theorem 1.1. In any triangle ABC' the following inequality holds:

1 1 /1 1)\?
. < (4= 1.6
2 o S 1o <R+2r) ’ (16)
with equality if and only if triangle ABC' is equilateral.
Inequality (1.5) can be obtained immediately from (1.6) by using the power mean inequal-
ity. Consequently, inequality (1.6) is better than (1.5).

For the sum Z e Ve also find the following result similar to (1.3):
my me

Theorem 1.2. In any triangle ABC' the following inequality holds:
1 7
> >

my +me — 6R+2r’
with equality if and only if triangle ABC' is equilateral.

(1.7)

In fact, inequality (1.7) is a sharp result in the strong sense (see Remark 4.1 below).
Our goal of this paper is to prove Theorem 1.1 and 1.2. We shall also propose four related
conjectures.

2. PRELIMINARIES

In order to prove Theorem 1.1 and 1.2, we shall give some lemmas in this section.

Lemma 2.1. For any triangle ABC with the area S, if the following inequality holds:

f(a7 b7 c, mavmbamws) 2 07 (21)
then it is equivalent to
3 3.3 3
f <ma, M, Me, 7 @, Zb’ 10 45) > 0. (2.2)

The above lemma is the central conclusion of "the Median-Dual Transformation" (see the
monograph [14], p.109).
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Lemma 2.2. In any triangle ABC' the following inequality holds:
> 2 2.
Yoz g (2.3
with equality if and only if triangle ABC' is equilateral.

We can find inequality (2.3) in [11] (p.213). In fact, inequality (2.3) can be obtained from
the following inequality:

S b2+ 02,
~ 4R
which is equivalent to the following inequality (see [14], p.223):

(2.4)

Mg,

mg V4
he — 2bc
Lemma 2.3. In any triangle ABC' the following inequality holds:

9
(mp +me)® > h2 + 1(12, (2.6)
with equality if and only if b = c.

Inequality (2.6) was noticed by the author many years ago. A proof of it can be found in
my recent paper [11].

Lemma 2.4. In any triangle ABC' the following inequality holds:
2 myme > mi+ > hZ, (2.7)
with equality if and only if triangle ABC' is equilateral.

To the author’s knowledge, inequality (2.7) was appeared in a Chinese paper [2] at the
earliest. It can be proved by using Lemma 2.3 as follows:

Proof. According to Lemma 2.3, we have

9
D (my+me)? =D hE+ 1 > at
Hence
23 22 myme > SR+ Y
Using the following known identity:
Zmz = %Zaz, (2.8)

the desired inequality follows immediately. Also, it is easily seen that equality in (2.7) occurs
only when a = b = ¢. This completes the proof of Lemma 2.4. ([

Remark 2.1. Inequality (2.7) can also be obtained by using the following inequality:
Ma(my +me —mg) > hi + h?, (2.9)
which was established by the author in [4].
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Lemma 2.5. In any triangle ABC' the following inequality holds:
1
MaMmyme > 5RZ hZ, (2.10)
with equality if and only if triangle ABC' is isosceles.

Note that identities bc = 2Rh, and abc = 4S R, one sees that inequality (2.10) is equivalent
to

8Rmompm, > szcQ, (2.11)
and )
abemgmyme > 552 b2 (2.12)

The latter was first proved by X.Z. Yang in [15].
For any triangle ABC', we have the following three basic identities:

> a=2s, (2.13)
> be=s"+4Rr + 377, (2.14)
abc = 4Rrs. (2.15)

By applying these identities, one can obtain the expressions of Y a™ and )" (bc)"™ (k being
natural number) in terms of R, r and s. For example, the identities are given in the following
Lemma 2.6 and 2.7.

Lemma 2.6. In any triangle ABC' the following identities hold:

> a* =2s* — 8Rr — 2r°, (2.16)
> a® =25 — (12Rr + 6r%)s, (2.17)
> a' =2s" — 4(4R + 3r)rs® + 2(4R + r)*r?, (2.18)
> a® =25 — 20(R+r)rs® + 10(2R + r)(4R + r)r’s, (2.19)
> a® =25 — 6(4R + 5r)rs* + 6(24R* + 24Rr + 5r?)r’s®

— 2(4R +7)r3, (2.20)
> a” =2s" — 14(2R 4 3r)rs® + 14(16R* + 20Rr + 5r°)r?s®

— 14(2R +r)(4R + 7)*r3s, (2.21)
> a® =2s° — 8(4R + 7r)rs® + 20(16R* + 24 Rr + Tr?)r?s?

8(4R + 1)(32R* + 32Rr + Tr)r®s* 4+ 2(4R + )4, (2.22)

> a® =25 — 36(R+ 2r)rs” + 36(12R* + 21Rr + 7r°)r’s®

— 12(160R? + 240R%*r + 105Rr? 4 1473)r3s3

+ 18(2R + r)(4R + 7)3rls, (2.23)

> a? =25'" — 10(4R + 9r)rs® + 140(2R + 3r) (2R + r)r’s°
— 20(160R? + 280R?r + 140Rr? + 217°)r?s?
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+ 10(40R? + 40Rr + 9r%)(4R 4 r)*r's® — 2(4R + r)°r°, (2.24)
> a't =2s"" — 22(2R + 5r)rs® + 44(16R? + 36Rr + 15r%)r°s”

— 308(2R + ) (8R* + 12Rr + 3r?)r®s® 4+ 22(4R + r) (160 R?

+ 240R%*r + 108Rr? + 157%)r1s® — 22(2R + 7) (4R + r)*rs, (2.25)
> a'? =2s" — 12(4R + 11r)rs'" 4 18(48R* + 120Rr + 55r°)r*s®

— 56(128R? 4 288R?r + 180Rr? + 3313)r3s5% + 6(4480R*

+ 8960R>r + 6048 R*r? + 1680Rr> + 165r1)r1s?

— 12(48R? + 48Rr + 117%) (4R 4 r)3rs® + 2(4R 4 r)5¢F, (2.26)
> a'? =25'* — 52(R + 3r)rs'! + 130(8R? + 22Rr + 11r%)rs”

— 312(32R3 4 80R?*r + 55Rr? + 11r3)r3s” + 26(1792R*

+ 4032R3r 4 3024R%*r? 4+ 924Rr® 4 99r1)rts®

— 52(112R3 + 168R*r 4+ TTRr? + 117%) (4R 4 r)*°s3

+26(2R 4 1) (4R + r)°rSs, (2.27)
> a =25 — 14(4R + 13r)rs™ 4 154(8R” + 24Rr + 13r*)r?s™

— 42(320R? + 880R%*r + 660Rr? 4 143r3)r3s% + 42(1792R*

+ 4480R>%r 4 3696 R*r% 4 1232Rr + 143r%)r1s0

— 14(4R + 7)(3584R* + T168R>r 4 4928 R*r? + 1408 Rr®

+ 143r")r°s* + 14(56 R* + 56 Rr + 13r%) (4R + 1) 105>

—2(4R+1)"r". (2.28)

The above identities (2.16)-(2.18) can be found in [14]. In [5] and [6], the author proved
identities (2.19)-(2.28) and identities (2.29)-(2.31) below.

Lemma 2.7. In any triangle triangle ABC' the following identities hold:
> 0 =s' —2(4R — r)rs® + (4R +1)*r?, (2.29)
Z b3ed =5 — 3(4R — r)rs* + 3rts® + (4R +1)3r3, (2.30)
Z b0 =512 — 6(4R — r)rst® 4 3(48R% — 24Rr + 5r?)r2s®
— 4(32R? — 24R*r + 12Rr? — 5r%)r®s® + 3(16R + 5r)r"s?
+ 6(4R + 7)%r7s* 4+ (4R + )55, (2.31)

3. PROOF OF THEOREM 1.1

In this section, we shall prove Theorem 1.1.

Proof. Using the formulas

® |
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and 5
abc
= — 2

one sees that inequality (1.6) is equivalent to

2
L 14y 2
(mp+me)? — 12 \abe  4S |
By Lemma 2.1, we must only prove the following dual inequality:
Z 2
m
16 L1 ( 35, a) |

9 Z (b+¢)2 = 12 \ mempme 35

which is equivalent to

8154 4+ 185%mympme Zma + (mambmc)2 (Z ma>2

1
2 2
> 1925%(mgmpme) Z Dot (3.3)
Now, we note that it follows from Lemma 2.2 and Lemma 2.5 that
1 2 2
M MpMe Z Mg > 1 Z a Z h;. (3.4)

Also, by Lemma 2.4 and identity (2.8), it is easy to get

(Zma>2 > gZa2+Zh2. (3.5)

Consequently, for proving inequality (3.3) we need to show that

9 3
815* + 552 Z a? Z hZ + (mamym,)? (2 Z a? + Z hZ)
1
2 2
> 1925 (mambmc) Zm,
Multiplying both sides by 64R? and using 2Rh, = bc and abc = 4SR, one sees that the
above inequality is equivalent to

Lo = 324(abc)?S? + 725> Z a? Z b2c? + 16(mgmyme)? <6R2 Z a’® + Z b2c2>
1
(b+c)?
With the help of Maple software, using S = rs, identities (2.15), (2.16), (2.29) and the
following known identity (see [3]):
16 Z(mambmc)2
=% —3(4R — 11r)rs* — 3(20R% 4 40Rr + 117%)r?s? — (4R + r)3r3, (3.7)

> 768(abc)? (mgmym,)? Z (3.6)

we easily obtain
Lo = s + (12R? — 20Rr + 179r%)s® — 2(96 R® — 218 R%r + 1064 Rr?
— 89r3)rs5 — 2(72R* 4 1328 R3r — 6264R*r? — T08Rr> 4 89r1)r?s?
+ (4R + r)(528R* 4+ 1232R3r — 2428 R*r? — 1412Rr3 — 179r%)13 52
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+ (6R+7)(2R — ) (4R + r)4rt. (3.8)
Again, using identities (2.13)-(2.15), we easily get

1 9s* + 2(4R — 3r)rs® + (4R + r)?r?
25 152(s% + 2Rr + 12)? ! (3:9)
Thus, by (3.8) and (3.9), one sees that inequality (3.6) is equivalent to
s%(s® + 2Rr + %)Ly
— 192(abe)? (mampme)? [954 + 2(4R — 3r)rs® + (4R + 7“)27"2] >0, (3.10)

Since abc = 4Rrs, we know again that the above inequality is equivalent to
Do = (s> +2Rr + 1%Ly
— 3072(Rr)?(memyme)? {984 +2(4R — 3r)rs®> 4+ (4R + T)Qrz} >0, (3.11)
Using identities (3.7) and (3.8), we obtain
Dy =s' + (12R? — 16Rr + 181r%)s'% — (144R3 + 1344R%r + 1448 Rr*

—537r)rs'? — (864R* — 17872R%r + 50336 R*r? + 1432Rr>

— 357r*)r?s® 4 (T68R® + 114560R*r + 170672R>r? 4+ 110128 R?r3

— 1424Rr* — 357r°)r3s% + (10944R° + 256512R5r 4 131408 R 2

— 111792R3r3 — 49956 R*r* — 4288 Rr® — 537r%)rs?

+ (4R + )(5184R° + 80512R%r + 93472R*r% 4 26016 R>r

— 3840R%*r* — 2164Rr® — 181r%)15s2 + (48R* + 800R3r

+ 184R?*r? — 8Rr® — ") (4R 4 r)"S.
It remains to show that Dg > 0.

We recall that for any triangle ABC' the following Gerretsen’s inequality (see [1] and [11])
holds:

g1 = 5> —16Rr +5r2 > 0. (3.12)
According to this, we can rewrite Dy in the form:
Do = g{ +meg; +msg; +magy +msgi +magi +migi +mo, (3.13)
where
me =12R? + 96 Rr + 14612,
ms =8(126R> + 283R*r + 1631 Rr? — 5461%)r,
my =4(8424R* — 6312R3r + 117549R%*r? — 80168 Rr> + 12608172,
m3 =16(34992R® — 117072R*r + 529773 R*r* — 536880R*r?
+ 183304Rr* — 18992r°)r3,
mg =144(32076 R® — 166320Rr 4 504657 Rr? — 684000R>r3
+ 387876 R*r* — 91136 Rrr® + 7072r%)r?,
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my =576(26244R" — 139725 R%r + 300024 R%r? — 641262R* 3
+ 634920 R3r* — 272728 R%1® + 50368 RrrS — 3136r7),
mo =3456(R — 2r)(65610R5 — 86751 R — 11556 R*r? + 48684 R3r®
— 21568 R*r* 4 3584 Rr® — 19275)r7.
By Euler’s inequality:
R>2r (3.14)

we see that ms > 0 and my4 > 0 hold. Putting R = 2r 4 e and substituting it into ms, we
easily get

ma =16(34992¢> + 232848t + 992877¢3r? 4 2631390213 (3.15)
+ 3446116er! + 16848721 )13, (3.16)

As e > 0, so that ms > 0. Similarly, we know mgy > 0. Consequently, by (3.12) and (3.13),
to prove inequality Dy > 0 it remains to show that

mig1 +mg > 0. (3.17)
Note that for any triangle ABC we have another Gerretsen inequality (see [1] and [14]):
g2 = 4R? + 4Rr + 3r* — s> > 0. (3.18)
Putting e = R — 2r, we easily obtain
mig1 + mo = 576(x191 + T2g2 + 3)7°, (3.19)
where
g1 =s*> — 16Rr + 512,
g2 =4R? + ARr + 3r% — 32,
x1 =3¢ (8748€3 + 75897¢%r + 275940er? + 44126613,
x9 =8(19197¢® 4 468701er 4 626232er? 4 2695681314,
x3 =2e(196830€° + 2101707€%r + 8865450er? + 13145020e373
+ 8879608¢%r + 3033504er® 4 33177610)r2.

Clearly, Euler’s inequality e > 0 shows that z1 > 0,22 > 0 and x3 > 0 hold. Finally, by
identity (3.19), Gerretsen’s inequalities (3.12) and (3.18), we conclude that inequality (3.17)
holds. We thus finish the proofs of inequalities (3.3) and (1.6). Furthermore, it is easy to
determine that equality in (1.6) occurs if and only if AABC' is equilateral. This completes
the proof of Theorem 1.1. ]

4. PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2.

Proof. We set

2
a

Ty 4+ T

m

1
Qo = Z(Tb ‘1‘7‘0) +
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2
1 my

Qp = Z(TC +7q) + m7
1 mz
Z(TQ +7p) + m_———

By the the arithmetic-geometric mean inequality, we have g, > mq, ¢ > myp and q. > me.

dc =

Consequently, for proving inequality (1.7), it suffices to prove that

1 7
> . 4.1
qu+qc_6R+2r (4.1)
With the help of software Maple, using s = (a + b + ¢)/2 and following formulas:
S
a — ’ 42
e = — (4.2)
1
Ma = 5V 202 4 2¢% — a?, (4.3)
S = \/s(s —a)(s — b)(s — ). (4.4)
we easily obtain the following identity:
1 8rsN-
S =2 (4.5)
b + qc M,

where

My =M MM,

M, =—a® + (=b+2c)a* +2(b — ¢)(b+ c)a® + (20> + 2bc? + 2¢3)a?
—(b—e)?(b+c)%a— (b + ) (b—c)?b,

My = —b° + (—c + 2a)b* + 2(c — a)(c + a)b® + (2¢3 + 2ca® + 2a%)b?
—(c—a)*(c+a)’b— (¢’ +a®)(c — a)’c

M, =— ¢+ (—a+2b)c* +2(a — b)(a+ ) + (2a + 2ab* + 2b%)c?
—(a—b)?*(a+b)%c— (a®> +b*)(a — b)%a

Ny =8a8c* + 8aBb* + 8b8¢c* — 1205¢™ + b'0c? — 4b%¢® — 1207
+ 146560 + 8b*c® — 4b%¢? + b2 + 36a°6°c® — 10a°b’c?
+22a°b°c% + 22a°b*c® — 100”3 — 10a*D° ¢ + 2ab8¢2
—10a*¥? + 6a*c"b + 6atcd” + 720t — 6abc®
—16a3b%c” + 20?4+ 3603635 — 10a3b°c? — 6ab8¢
+36a3b5¢3 — 10a3b*c® — 164307 + 6a” cb* + 2a°b*c?
—3a%bc® — 16a*b>c” — 3a%b%c + 22a%0°¢° + 5a?b*c®
+ 5a2b8¢% + 2061 S — 16427 — 3ab”c? + 3abct?
+3ab'%c + 2a°6°¢* + a'b? + 6abc” — 6ab’c® + 6ab’c*
— 3ab*c® — 6ab3® — 164763 + 6a” b 4 2a5b* 2
+a'%? — 4a°¢3 — 4a°b® — 124"D° — 1247 + 144585
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+ 14a5¢% — 12a°0" — 12d°¢” + 8a*b® + 8a'c® — 4a’V?
— 403 + a®b'° + a2c!? — 3a°?b — 3a°cb? + 3a%c
—16a"b% — 6a®c®b — 6¢a®b> + 5aSb3c2.
Putting d = abc, we obtain the following identity:
Ny = 72d* + azd® + asd® + ard + ao, (4.6)
where
as :462:@3 — 1020,2@2,
as :2Za22a4 + 192@6 — 162a2a5 +2226303,
ay :()’Zag — 62@22a7 — SZCLZCLS +62a32a6,
ag :7Za12 +Za22a10 —42(132@9
+82a42a8 — 122@52(174- 1421)606.
With the help of Maple, from (4.6), making use of identity (2.13), (2.15), Lemma 2.6 and
Lemma 2.7, one obtains the following identity

Ny = 6471 Ny, (4.7)
where
Ny =s® + 8(4R + 5r)Rs® 4+ (192R* + 192R3r 4 16 R*r? — 40Rr3 — 2r%)s*
— 8(4R + 3r)(4R + 1)’ Rrs® + (AR + r)%7%.
We now still set d = abe. Expanding the product M, MyM, and arranging gives
My = —60d° + byd* + b3d® + bad* + byd + by, (4.8)
where
by =66> a a®—138) a’,
b3 =18> a) a® 114> a®+56) a*> a' —72> b'c’,
by :8Za9 +402a42a5 — 55Za32a6 — 122(12@8
+ 23 Z a? Z a7,
b1 =16> a?d a'+19> a? =33 a®> a®—27> a®d d’
—&-32217%6 — 3Za2a11 +302a42a8,
bo = — ZaZaM +52a52a10 — 7Za62a9
+4Za72a8 — 2Za42a11 — 2Za32a12
+3 Z a? Z a3
Using s = (a + b+ ¢)/2, Lemma 2.6 and Lemma 2.7, we can further obtain
My = 1024575 M, (4.9)
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where
My =(R + 2r)s® + (16R> + 32R*r + 12Rr? — 2r%)s8
+ 2(R + r)(32R* — 32R3r — 56 R%*r? — 20Rr3 — rt)s?
— 2(8R3 + 8R?r — 2Rr* — ) (4R + 7)*rs® + (4R + r)ORr?.
It follows from (4.5),(4.7) and (4.9) that

1 N
3 =2 (4.10)
b+ qc 2My
Thus, to prove inequality (4.1) we need to prove
No 7
> . 4.11
2M> — 6R+2r ( )
From identity (4.10), it is easy to show that Ma > 0. So we have to prove
Eo = (3R + T‘)NQ - 7M2 Z 0. (412)

Using the expressions of My and No, we easily obtain
Eg=— (4R +13r)s® — (16R® + T2R?r + 44Rr* — 141°)s"
+ (128R® + T68RYr + 1472R3r? + 960R*r> 4 248 Rr?
4 12r°)s* + 2(8R3 + 4R?r — 26 Rr* — Tr3) (4R + 1)3rs?
— (4R — 7)(4R 4 )%,

It remains to show that Eg > 0.

We now recall that for any triangle ABC the following fundamental inequality (see
[1,10,14]) holds:

to = —s* + (4R? + 20Rr — 2r?)s*> — r(4R + 1) > 0. (4.13)

According to this inequality and Gerretsen’s inequalities (3.12) and (3.18), we can write Ej
as follows:

Eo = (c15 4 co5® + ¢3)to + 4r(cag1 + 592 + ), (4.14)
where
c1 =4R + 13r,
co =32R% + 204R*r 4 296 Rr* — 401,
c3 =(432R* 4 2704R%r + 3720R*r? — 1800Rr> + 55r%)r,
¢4 =336R5 + 10942R*r* + 1479,
c5 =4Rr(224R"* + 2608 R*r + 3184R*r? 4 319r1),
ce =4(R — 2r)(1152R5 + 1388R’r + 1676 Rr* — 11273 R3r3
+ 8193R*r* 4 489Rr> + 7r0)r-.

By Euler’s inequality, it is easy to know that co > 0,¢c3 > 0 and ¢g > 0 hold. Thus, form
identity (4.14) we conclude that Fy > 0 holds. Therefore, we finish the proof of inequality
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(1.7). Also, it is easy to determine that equality in (1.7) holds if and only if AABC is
equilateral. This completes the proof of Theorem 1.2. ]

Remark 4.1. For any triangle ABC, inequality (1.7) is the best possible inequality in the

form:
1 1

>
Zmb—}—mc ~ R—k(R—2r)’

(4.15)

1
where k is a constant such that 0 < k < 1. That is given by (4.15) for k = - This conclusion

can be proved as follows: Let us consider an isosceles triangle with sides z,1,1(0 < z < 2).
Putting a = z,b = ¢ = 1 and using the previous formulas (3.1), (3.2), (4.3), (4.4), we get

V4 — x? 1 1 1
_ _ _ a2 - — =/ 2
r= Sy ,R—m, Ma = 5 4 T, My =me = 1+ 224,

1

1
30 Ma = 1,mpy =me= 5 In this setting (4.15) becomes

Letting © — 0, then r =0, R =

2
>77
“1-k

[SCAIEN]

and it follows that k& < —. Therefore, the above statement is true.

=

5. FOUR CONJECTURES

In this section, we shall present three related conjectures as open problems.
We first give an inequality similar to the previous inequality (1.6):

Conjecture 1. In any triangle ABC, the following inequality holds:
1 1 /1 1)\3
— < — =+ =] . 5.1
Z(mb+mc)3_72 <R+2T) (5.1)

By the power mean inequality, the above inequality is stronger than inequality (1.6).
For inequality (1.5), we propose the following exponential generalization:

Conjecture 2. If 0 < k < 4.6, then for any triangle ABC the following inequality holds:

S e < ot (i ) (5.2
(mp +me)k = 2.3k=1 \ Rk~ 2kpk '

If k£ < 0, then the above inequality holds reversely for the acute triangle ABC.

Remark 5.1. For the two cases k = —1 and k = —2, the inequalities could be easily proved
by using the following known acute triangle inequalities (see [%]), respectively:

> me > gR+4r (5.3)

and
Z(mb +me)? > 452 (5.4)
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In [7], the author proposed the following conjecture related to Lemma 2.2:
Bi+ Ry + Ry 4R(ma + my + me)
4 rog+ry T a? 4 b? + 2
where Rp, Ro, R3 and rq, 7y, r3 are the distances from an interior point P inside triangle
ABC to the vertices A, B, C and sides BC, C A, AB respectively.
We present here two new conjectures related to Lemma 2.3 and 2.4:

: (5.5)

Conjecture 3. For an interior point P inside triangle ABC| the following inequality holds:
Ri+ Ry + R3 S 4(mp + me)
ri+ra+r3 T \/9a2 +4h2
Congjecture 4. For an interior point P inside triangle ABC, the following inequality holds:
Ry + Ry + R3 N 4(mbmc + memg + mamb)
ri+ro+rs T m24+mi4+m2+h2+hi+hE

(5.6)

(5.7)

Lemma 2.3 and 2.4 show that both inequalities (5.6) and (5.7) are sharpened versions of
the following famous Erdés-Mordell inequality (see [1], inequality 12.13):

Ri+ Ry + R3 > 2(7“1 =+ r9 + 7"3). (5.8)
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