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OPERATOR MONOTONICITY OF AN INTEGRAL TRANSFORM OF
POSITIVE OPERATORS IN HILBERT SPACES WITH APPLICATIONS

SILVESTRU SEVER, DRACOMIR!

ABSTRACT. For a continuous and positive function w (A), A > 0 and u a positive measure
on (0,00) we consider the following integral transform

D (w, 1) (T) = / W) A T) L du (V)
0

where the integral is assumed to exist for T a positive operator on a complex Hilbert space
H.

We show among others that, if B > A > 0, then D (w, ) (B) < D (w, 1) (A), namely
D (w, p) is operator monotone decreasing on (0,00). From this we derive that, if f :
[0,00) — R is an operator monotone function on [0, c0), then the function [f (0) — f (£)]t™*
is operator monotone on (0,00). Also, if f : [0,00) — R is an operator convex function
on [0,00), then the function [f (0) 4+ f4 (0)¢ — f (t)]t~? is operator monotone on (0,00) .
Some examples for integral transforms D (-, -) related to the exponential and logarithmic
functions are also provided.

1. INTRODUCTION

Consider a complex Hilbert space (H, (-,-)). An operator T is said to be positive (denoted
by T > 0) if (Tz,x) > 0 for all x € H and also an operator T is said to be strictly positive
(denoted by T > 0) if T is positive and invertible. A real valued continuous function f on
(0, 00) is said to be operator monotone if f(A) > f(B) holds for any A > B > 0.

We have the following representation of operator monotone functions [], see for instance
[1, p. 144-145]:

Theorem 1.1. A function f : [0,00) — R is operator monotone in [0,00) if and only if it
has the representation

£ = £(0) +bt+/ooo ti)\)\du O, (1.1)
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where b > 0 and a positive measure y on [0,00) such that
A
——dp (A . 1.2
| e < (12)

A real valued continuous function f on an interval I is said to be operator convez (operator
concave) on I if

FUL=ANA+AB) < (2)(1=X) f(A) +Af(B) (0C)
in the operator order, for all A € [0,1] and for every selfadjoint operator A and B on a
Hilbert space H whose spectra are contained in I. Notice that a function f is operator

concave if —f is operator convex.
We have the following representation of operator convex functions [1, p. 147]:

Theorem 1.2. A function f :[0,00) = R is operator convez in [0,00) with f| (0) € R if
and only if it has the representation

0o 2
F@&) =10+ f (0)t+ct2+/0 tt:\)\du()\), (1.3)

where ¢ > 0 and a positive measure {1 on [0,00) such that (1.2) holds.

Let A and B be strictly positive operators on a Hilbert space H such that B—A > m > 0.
In 2015, [2], T. Furuta obtained the following result for any non-constant operator monotone
function f on [0, c0)

FB) = £(4) 2 £ (141 +m) - 7 (JA]) (1.4
> F(IBI) = £ (I1B] = m) > .
If B> A >0, then
FB) - f4) 2 fQMH+WB;;rw)fWM) (15)
> fWﬂD—fQBH—WB;;rw>>0

The inequality between the first and third term in (1.3) was obtained earlier by H. Zuo
and G. Duan in [0].

By taking f (t) =t", r € (0,1] in (1.3) Furuta obtained the following refinement of the
celebrated Lowner-Heinz inequality [3]

B — A" > (\AH + M) — A" (1.6)

> ||B|" - (HBH - M) >0
provided B > A > 0.
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With the same assumptions for A and B, we have the logarithmic inequality [2]

mB—InA>In (HAH + M) —n (]| A]) (1.7)

> In (|B]) - In (HB! - M) >0,

Notice that the inequalities between the first and third terms in (1.6) and (1.7) were
obtained earlier by M. S. Moslehian and H. Najafi in [5].

For a continuous and positive function w (A), A > 0 and u a positive measure on (0, c0)
we consider the following integral transform

D (w, ) (T) = | Tw) A+ 1) dp (),

where the integral is assumed to exist for all T' a positive operator on a complex Hilbert
space H.

We show among others that, if B > A > 0, then D (w, p) (B) < D (w, u) (A), namely
D (w, p) is operator monotone decreasing on (0, 00) . From this we derive that, if f : [0, 00) —
R is an operator monotone function on [0, 00), then the function [f (0) — f (¢)] ¢! is operator
monotone on (0,00) . Also, if f:[0,00) — R is an operator convex function on [0, 00), then
the function [f (0) + f4 (0)t — f (¢)] t~2 is operator monotone on (0,00). Some examples
for integral transforms D (-, -) related to the exponential and logarithmic functions are also
provided.

2. BASIC IDENTITIES

We have the following integral representation for the power function when ¢ > 0, r € (0, 1],
see for instance [, p. 145]
sin (rmr) oo AT1
T o A+t
Observe that for ¢t > 0, t # 1, we have

/u d\ _Int N 1 ln<u—|—t>
o AFt)A+1) t—1 1—t \u+1
for all u > 0.

By taking the limit over u — oo in this equality, we derive

= d\. (2.1)

Int /OO dA
t—1 Jo A+t)(A+1)
which gives the representation for the logarithm
o0 dA
Int=(t—1 / —
nt=0=0 | GFDoTD
for all ¢t > 0.
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Motivated by these representations, we introduce, for a continuous and positive function
w (A), A > 0, the following integral transform

D (w,p) (t) := /Ooo zl\)(_:\zdu (AN, t>0, (2.3)

where (1 is a positive measure on (0,00) and the integral (2.3) exists for all ¢ > 0.
For p the Lebesgue usual measure, we put

D (w) (t) := /0 - ;Ui\id)\, t>0. (2.4)

If we take 4 to be the usual Lebesgue measure and the kernel w, (A\) = A"~1, r € (0,1],

then
o sin (r)

D (w,) (), t > 0. (2.5)

m
For the same measure, if we take the kernel wy, (A\) = (A\+1)"", ¢t > 0, we have the
representation
Int=(t—1)D (wy) (t), t > 0. (2.6)
Assume that T' > 0, then by the continuous functional calculus for selfadjoint operators,
we can define the positive operator

D (w,0) (1) = [0 (A +1) 7 du (), (2.7)
where w and p are as above. Also, when g is the usual Lebesgue measure, then
D (w) (T) ;:/ w\) A+ T)"VdA, (2.8)
0

for T'> 0.
In the following, whenever we write D (w, u) we mean that the integral from (2.3) exists
and is finite for all ¢ > 0.

Theorem 2.1. For all A, B > 0 we have the representation
D (w, p) (B) = D (w, p) (A) (2.9)
- _/OO (/1 ()\+(1—t)B—irtA)_l(B—A)()\+(1—t)B+tA)_1dt)
X w ()(\)) du (O)\) .

Proof. Observe that, for all A, B >0

D (w, 1) (B) — D (w, 1) (A) = /0 w) [A+B) =+ AT dp(). (2.10)

Let T, S > 0. The function f (t) = —t~! is operator monotone on (0, 00), operator Gateaux
differentiable and the Gateaux derivative is given by

Vfr(8) = lim [f(T”i) - f(T)] _plgp! (2.11)

for T, S > 0.
Consider the continuous function f defined on an interval I for which the corresponding op-
erator function is Gateaux differentiable on the segment [C, D] : {(1 —¢)C +tD, t € [0,1]}
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for C, D selfadjoint operators with spectra in I. We consider the auxiliary function defined
on [0,1] by

fon (t) = F(1—t)C+tD), t € [0,1].
Then we have, by the properties of the Bochner integral, that

D) -1 = [ % ten @ di= [ Vo gowun(D-Cit. (212)

If we write this equality for the function f(t) = —t~! and C, D > 0, then we get the
representation
1
cl-Dpl= / (1—8)C+tD) 1 (D=C)((1—1)C+tD)"Ldt.  (2.13)
0

Now, if we take in (2.13) C = A+ B, D = A+ A, then
A+B) ™ —Aa+4)7"! (2.14)
:/01((1—15)()\+B)+t(>\+A))1(A—B)
X (1—=t)(A+B) +t(A+ A)) "at
:/01()\+(1—t)B+tA)_1(A—B)()\+(1—t)B+tA)_1dt

and by (2.10) we derive (2.9). 0

Remark 2.1. We observe that if A, B > 0 and r € (0, 1], then by (2.5) we get the identity

™

prot_ g1 - _Sin(rm) /OOO AL (/01 A+ (1 —t)B+tA)" (2.15)
x (B — A) ()\+(1—t)B+tA)_1dt) d\.
If A, B> 0 with A—1 and B — 1 invertible, then
(B—1)'lnB—(4-1)"'InA (2.16)
=— /OO A+1)71
0
X (/01(/\+(1—t)B+tA)‘1(B—A)(/\+(1—t)B+tA)‘1dt> dA.

Corollary 2.1. Assume that f :[0,00) — R is an operator monotone function that has the
representation (1.1). Then for all A, B > 0 we have the equality

BT (B) = AT (A) = [(0) (BT - A7) (2.17)
:—/OOO)\(/01()\—1—(1—t)B+tA)_1(B—A)
x (A4 (1= t) B+tA)" dt) du(N).
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If f(0) =0, then we have the simpler equality
B (B) = A7 f(A)— £(0) (B~ = A7) (2.18)
o 1
- _ _ -1 _
- /0 /\(/O O+ (1= 1) B+1A) " (B A)
x (A4 (1= t) B+tA)" dt)du (M),
Proof. From (1.1) we have that

f(t) = f(0)
t
where £ (X\) = A\, A > 0. Then for A, B > 0,

D (0, 1) (B) =D (£, 10) (A) = [f (B) = f(0)] BT' = [f (A) = f(0)] A7
=B f(B) - AT f(A) - f0) (B —A)
and by (2.9) we derive (2.17). O

—b=D(p) (), (2.19)

Corollary 2.2. Assume that f : [0,00) — R is an operator convex function that has the
representation (1.2). Then for all A, B > 0 we have the equality

F(B)B2= f(A) A2 = fL(0) (B™' = A7") = f(0) (B2 - 472) (2.20)
00 1
_ _ -1 _
_ /0 A(/O (At (1—t)B+tA) (B - A)
XA+ (1—t) B+tA)"dt) du ().
If f(0) =0, then we have the simpler equality
f(B)B2 = f(A) A= f,(0) (B~ — A7) (2.21)
00 1
_ _ _ -1 _
_ /0 )\(/0 A+ (1—t)B+tA)" (B - 4)
x (A4 (1= t) B+tA)" dt)du(N).

Proof. From (1.3) we have that

f)—fO) -0t
t2

c=D(l,p)(t),
for t > 0. Then for A, B > 0,

D (4, 1) (B) ~ D (L.1) (A) = F(B) B — f, (0) B~ — [ (0) B2

A)A2 4+ L (0) A7 + f(0) A2

)
)
~f(0) (B2~ A7?)
and by (2.9) we derive (2.20). O
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Remark 2.2. Let a > 0 and f (t) = (t+a)? with p € [-1,0) U[1, 2]. This function is operator
convex and f (0) = aP, f' (0) = paP~1. Then for all A, B > 0 we have the equality

(B+a)’B 2 —(A+a)PA™? — paP~! (B_l - A_l) —adP (B_2 - A_Q) (2.22)

__/OOO,\(/OI(AJr(l—t)BthA)‘l(B—A)
><()\+(1—t)B+tA)_1dt> dp (),

for some positive measure p on (0, 00).

3. MONOTONICITY PROPERTIES

In what follows, we assume that the integral transform defined by (2.3) is well defined for
a continuous and positive function w (A), A > 0 and a positive measure p on (0, 00).

Theorem 3.1. If B> A > 0, then
D (w.11) (B) < D (w. ) (4) (3.1)
namely, the function D (w, ) () is operator monotone decreasing on (0, 00).

Proof. From B — A > 0, by multiplying both sides with (A 4 (1 — ¢) B+ tA) ™" for t € [0,1]
and A > 0, we get

A+(1—t)B+tA) " (B—A A+ (1 —-t)B+tA)~' >0,

which gives, by integration over ¢ € [0, 1], that
1
/ A+ (1—1) B+tA) " (B— A) (A + (1—1t) B+tA)Ldt >0,
0

for all A > 0.
Now, if we multiply this inequality by w (A) > 0 and integrate over the positive measure
dp (N), we get
00 1
/ w(\) (/ O+ (1—t) B+tA) " (B—A) (r + (1—t)B+tA)1dt> i (V)
0 0
>0,

and by representation (2.9), we deduce (3.1). O

Corollary 3.1. Assume that f : [0,00) — R is an operator monotone function on [0, 00).
Then for all B > A > 0 we have

AT (A) =BT (B) > £(0) (AT = B7Y), (3.2)

namely the function [f (0) — f (¢)]t~1 is operator monotone on (0,00) .
In particular, if f(0) =0, then

AT (A) 2 BT (B) (3-3)

for all B> A > 0, namely —f (t)t~" is operator monotone on (0,00) .
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Proof. Tt follows by Theorem 3.1 by observing that, if f : [0,00) — R is operator monotone,
then by (1.1)
f(t) — f(0)
t
for some positive measure p, where £(A) = A, A > 0. g

—b=D(,u)(t), t>0

Corollary 3.2. Assume that f : [0,00) — R is an operator convex function on [0,00). Then
for all B> A > 0 we have

FAA?—fB)B? 2L (0) (A7 =BT ) +7(0) (A2 -B7)  (34)

namely the function [f (0) + fi (0)t — f (t)] t~2 is operator monotone on (0,00) .
In particular, if f(0) =0, then

f(A)A2—f(B)B2>fL(0) (a4 - BY) (3.5)
for all B> A > 0, namely [f} (0)t — f (¢)] =2 is operator monotone on (0, 0c)

Proof. 1t follows by Theorem 3.1 by observing that, if f : [0,00) — R is an operator convex
function on [0, c0), then by (1.3) we have that

f(t)—f(gg_f+(0)t—czD(f,u)(t)»

for some positive measure p, where £(A) = A, A > 0. g

Remark 3.1. Let a > 0 and p € [—1,0)U[1, 2]. Then for all B > A > 0 we have the inequality
(A+aPA2— (B+a)fB2>pa? (A1 =B ') +a" (A2-B72).  (3.6)

4. RELATED INEQUALITIES

We start with the following inequalities that can be derived from Furuta’s inequalities
(1.4).

Proposition 4.1. Assume that g : [0,00) — R is operator monotone on [0,00). If A >0
and there exists m > 0 such that B— A > m > 0, then

A'g(A)~ B'g(B)~g(0) (A7 - B™") (4.1)
>4~ O T
> e~ i O a2
If g(0) = 0, then
A )~ 5ty (ey > 20D oA+ o

g(IBl=m) g(BI)
2Bl =m B -
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Proof. 1If we write the inequality (1.4) for f(¢) = 9(0)29('5), t > 0, which, by Corollary 3.1, is

operator monotone, then we have

B g (0) — g(B)] — A~ [g(0) — g (A)] (43)
g(0)—g(JAl+m) g(0)— g (Al

2 Al +m 1]
90— g(IBl) 90— g(B] - m)

=l e

Observe that
B g(0) =g (B)] - A" [g(0) — g (A)]
= A7lg(A) = B¢ (B) ~ g(0) (A7 = B7Y),

9(0) —g (Al +m) _g(0)—g(AlD

TAT +m Al
(A g(lAl+m) m
R R (O
and
9(0)—g(IB) () —g(IB] —m)
1] 18] —m
Cg(Bl-m) g(IBD) m
=Bl —m 18l OBy
and by (4.3) we get (4.1). O

Remark 4.1. If we take g (t) =", r € (0,1] in (4.2), then we get
AT =B AT = (A m) T = (1B =) = BT >0, (44)
provided A > 0and B— A >m > 0.
Its is well known that, if P > 0, then
(P, y)|” < (Pz,x) (Py,y)

for all z, y € H.
Therefore, if T' > 0, then

0< (z,2)> = <T_1T$,x>2 = <T:1:,T_1x>2
<(Tz,z) <TT_1x,T_1x> = (Tz,x) <x,T_1:L’>

for all x € H.
If x € H, ||z|| = 1, then

1< (Tx,x) <x,T_1:B> < (Tx,z) ”SlHlp <l’,T_1£L'> = (Tx,z) HT_1
z||=1

)

which implies the following operator inequality

HT*H_1 1y <T. (4.5)
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Corollary 4.1. Assume that g : [0,00) — R is operator monotone on [0,00). If A > 0 and
B—A>0, then

Alg(A) =B lg(B)—g(0) (A1 -B) (4.6)
-1
>gwm>_gom”*WBA)H )
L I T/ G-Vl
-1
-4~

(1 + s — ) i
G R

1Bl - |- 7
— —17t
— g<0) H(B A) H —
(181 - =7 ) 151
> 0.
If g (0) = 0, then
A7'g(A) - B¢ (B) (4.7)
>gwm>_g@m“W@‘Arwl)
I N P e
o(mn-fe-a7") ey
~oBl- |- A)—lH*1 1Bl ~

Remark 4.2. If we take g (t) =t", r € (0,1] in (4.7), then we get

a2 A - (a7 ) (4.8

> (181~ -4~ 1B o

where A >0 and B— A > 0.
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Proposition 4.2. Assume that h : [0,00) — R is operator convex on [0,00). If A > 0 and
there exists m > 0 such that B — A > m > 0, then

h(A)A2 = h(B)B2=h(0) (A2~ B?) +h (4.9)
> (|l Al) 1A - <||A|r+m><||Au+m>

—h 0) (417 = (14l + m)~2) =k 0) (A1~ = (4]l +m) ")

> h(|[B]| —m) (IB] —m)~> = h(|BIl) | B>

h( ) (B = m)~* - ||Bu*2) — 1y () ((IB] =m)~* = | BII ")

O

If h(0) =0, then
h(A)A™? —h(B)B 2+ 1. (0) (B — A) (4.10)
> h (AN A7 = B (1Al +m) (| Al| +m)~>
=1, ) (14171 = (Al +m) )
> h(|[B]| = m) (1Bl —m)~* = h (| BI) | B] >
— 1, ) (1Bl =m)™" = 1B ")

>0

Proof. If we write the inequality (1.4) for f (t) = [h(0) + A/, (0)¢t — h (t)] t2, ¢ > 0, which,
by Corollary 3.2, is operator monotone, then we have

[R(0) + R, (0)B—h(B)] B~2~[h(0)+h, (0)A—h(A)]A (4.11)

> [1(0) + 1 (0) (I All 4+ m) — B (JJAl| +m)] (| A +m)~
— [h(0) + K (0) [LAIl = R (JlAIN] (Al
> [1(0) + 1 (0) | Bl — A (I1BIN] 1B~
= [1(0) + 1 (0) (1Bl = m) = h (| B]| = m)] (| B]| — m)~*

Observe that
[h(0)+ K (0)B—h(B)] B2~ [h(0)+h (0)A—h(A)]A?
= h(A) A= h(B)B™2 = h(0) (A2~ B2) + 1, (0) (B - 4),

[ (0) + My (0) (1]l +m) = h (A +m)] (| Al +m)~>

— [n(0) + B, (0) A = R ([ Al] 4] 72

= R (AN 1A% = B (Al +m) (|A]| +m) 2

— 1 (0) (1417 = (Al +m)~2) = by ) (Al = (1Al +m) ")
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and
[1:(0) + 1 (0) || BIl = h (|| BI)] || BII~*
— [0 (0) + Ky (0) (IIBl = m) = k(| B = m)] (I|B]| —m)~
= h(|B] —m) (|IBIl —m)~* = h(|BI) | B>

=1 (0) (1Bl =m)~* = 1BII*) = 1, 0) (1B —m)~* = 1B] ")

and by (4.11) we derive the desired inequality (4.9).

51

O

-1
Remark 4.3. If A > 0 and B — A > 0, then we can take m = H(B - A)_lH in Proposition

4.2 to obtain other norm inequalities. The details are omitted.

The function h (t) := —1In (¢t 4+ 1) is operator convex with A (0) = 0 and A’ (0) = —1. Then

by (4.10) we get
B2In(B+1)—A2ln(A+1)— (B-A)
> (Al +m) > n (4] +m +1) = A In (4] + 1)
+AI7 = (1A +m)™!
> 1B (IB]l +1) — (1Bl = m) > (|B] - m +1)
(1B —m) — 1B
>0

provided that A > 0 and B— A >m > 0.

5. MORE EXAMPLES OF INTEREST
We define the upper incomplete Gamma function as [7]
I'(a,z):= /oo t*te~tdt,
which for z = 0 gives Gamma function )
[(a) := /OOO t*te~tdt for Re a > 0.

We have the integral representation [

]
a,—z 00 ¢—a —t
I'(a,z) = ? ¢ /0 € _at

I'(l—a) z+t
for Re a < 1 and |ph z| < 7.

(4.12)

(5.1)

Now, we consider the weight w.—a.—. (A) := A~% ™ for A > 0. Then by (5.1) we have

AN

t+ A

D (w.—0y) (t) = /OOO A\ = T(1 — a)t~*€'T(a, 1)

fora<1andt>0.
For a =0 in (5.2) we get

00 e—)\
D (w, ) (t) = /0 S dA = DT (0,1) = ¢y (1

(5.2)

(5.3)
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for ¢t > 0, where

u
Let @ =1 — n, with n a natural number with n > 0, then by (5.2) we have
0o Z\n—1lg=A

D (wn-1e-) (t) = /O TN
= (n— D" (1 —n,t).

Eq (t) ::/t ° .

d\ =T(n)t" LeT'(1 — n,t)

If we define the generalized exponential integral [9] by

oo ,—t
Ey(2):=2""'T(1 —p,2) = zp_l/ et—pdt

z

then
t" 01 —n,t) = B, (t)
forn>1and ¢t > 0.
Using the identity [9, Eq 8.19.7], for n > 2
(="
(n—1)! (n—1)!

E, (z) =

we get
D (wn-10-) (t)
= (n —1)1e'E, (t)

: (_t)n—l e_t n—2
=(n—1)e l(n_l)!El(tH _1)!]§)<n—k—2)!(—t)k

(n
- ”f (=D)" (n =k =2)1t* 4+ (—1)" 14" e By (1)
k=0

forn>2and t > 0.
If T'> 0, then we have

D () (T) = /0 At (14 0) " dA = (1 — a)T " exp (T) T'(a, T)

for a < 1.
In particular,

D (w,.) (T) = /OOO e M (T + N~ d) = exp (T) By (T)
and, for n > 2
D (w10-) (T)
_ /OOO Al (T 4+ A) " d

— nf (=1)*(n— k= 2)1TF 4 (—1)" ' T Lexp (T) By (T),
k=0

(5.6)
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where T' > 0.
For n = 2, we also get

D (w,) (T) = /OOO Ae (T +2)"Vd) = 1 — Texp (T) Ey (T) (5.10)

for T > 0.

We consider the weight W4 q)! (A) = /\%ra for A > 0 and a > 0. Then, by simple
calculations, we get

s 1 Int —Ina
D (w( 1) () ;:/0 GTio TN T e (5.11)

for all a > 0 and ¢t > 0 with t # a.
From this, we get

Int=Ina+(t—a)D (w(_+a)_1) (t)
for all t, a > 0.

If T > 0, then
InT=Ina+ (T —a)D (w(.Jra)q) (t) (5.12)
o) 1 71
=1 T — A+T) " dA.
na+ ( a)/o ()\+a)( +1T)
Let a > 0. Assume that either 0 < T < a or T > a, then by (5.13) we get
0 1
InT —Ina) (T - —1:/ A+T)Hd 5.13
(7 =) (T —0) ' = [* s ) (5.13)
We can also consider the weight W2 g2yt (A) = )\Q#W for A > 0 and a > 0. Then, by
simple calculations, we get
o0 1
D (w(.2+a2)—1> (t) == /0 A +1) (N2 + a2)d)‘
mt Int—Ina

2 (12 +a2) 2+ a2
for t >0 and a > 0.
For a = 1 we also have

o0 1 Tt Int
D 7 = = _
(w('2+1) 1) Q /0 (A +1) (A2 + 1)dA 22 +1) 2+1

for t > 0.
If T'> 0 and a > 0, then
& 2, 2\l B 2, 2\ 7!
5T (12 +0a?) = (T —na) (T2 + o) (5.14)

and, in particular,

K 2 -1 -1 _ [ 1 -1
ST (T2 1) - (12 41) lnT—/O e AT (5.15)
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Proposition 5.1. Let B> A >0 and a < 1, then

A %exp (A)I(a, A) > B~ %exp (B)I'(a, B). (5.16)
In particular,
exp (A) By (A) > exp (B) Ey (B) (5.17)
and
Bexp (B) E1 (B) > Aexp (A) E1 (A). (5.18)

The proof follows by Theorem 3.1 and the identity (5.7).

Proposition 5.2. Let B> A>a>0o0ra>B>A>0, then

(InA—Ina)(A—a)'>(InB—1Ina)(B—a) . (5.19)
IfB>A>1>00r1>B>A>0, then
(A-1)"'lnA>(B-1)""'InB. (5.20)

The proof follows by Theorem 3.1 and the identity (5.13).

Proposition 5.3. Let B> A >0 and a > 0, then

(InB —1Ina) (B2 + a2)71 —(InA—1na) <A2 + a2)71 (5.21)
> % {B (B2 —|—a2)_1 —A <A2 + a2)_1} .
In particular, for a =1,
(B2+ 1)_1 InB - (A% + 1)_1 InA > g [B (B2 + 1)_1 —A(4%+ 1)_1} . (5.22)

The proof follows by Theorem 3.1 and the identity (5.14).
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