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Abstract. In this study, we present a new generalization of the Hermite-Hadamard type
inequalities for convex functions using a newly developed generalized an identity, which
is rigorously proven. Moreover, we present new inequalities that are closely linked to
both the left and right-hand side of the Hermite-Hadamard inequalities for Riemann and
Riemann-Liouville fractional integrals. The results of this study build upon previous works
and provide additional insights.

1. Introduction

Definition 1.1. The function f : [a, b] ⊂ R → R, is said to be convex if the following
inequality holds

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)
for all x, y ∈ [a, b] and λ ∈ [0, 1] . We say that f is concave if (−f) is convex.

The theory of convex functions is a crucial area of mathematics that has applications in
a wide range of fields, including optimization theory, control theory, operations research,
geometry, functional analysis, and information theory. This theory is also highly relevant
in other areas of science, such as economics, finance, engineering, and management sciences.
One of the most well-known inequalities in the literature is the Hermite-Hadamard integral
inequality (see, [4]), which is a fundamental tool for studying the properties of convex
functions. This inequality has important implications in many areas of mathematics and
has been extensively studied in recent years, leading to the development of new and powerful
mathematical techniques for solving a broad range of problems.

f

(
a + b

2

)
≤ 1

b − a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2 (1.1)
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where f : I ⊂ R → R is a convex function on the interval I of real numbers and a, b ∈ I

with a < b.
These inequalities were first introduced independently by Charles Hermite and Jacques

Hadamard in the late 19th century and has since found numerous applications in various
fields of mathematics, including analysis, geometry, and probability theory. The inequalities
states that if a function is convex on a given interval, then the average value of the function
over that interval is bounded from above by the midpoint value of the function, multiplied by
the length of the interval. This inequalities provide a powerful tool for estimating integrals
and has become a standard result in the theory of convex functions. The Hermite-Hadamard
inequalities have numerous applications in mathematics. For example, they can be used
to solve problems in integral calculus, probability theory, statistics, optimization, and
number theory. The inequalities are also useful in solving physical and engineering problems
that require the determination of function averages. In general, the Hermite-Hadamard
inequalities provide a powerful tool for solving a wide range of mathematical problems. They
are widely studied and used in various fields of mathematics, and their applications continue
to grow as new problems are encountered. One of the most widely applied inequalities
for convex functions is Hadamard’s inequality, which has significant geometric implications.
This inequality has been extensively studied in the literature, leading to numerous directions
for extension and a rich mathematical literature (see [3–8,11,16]).

In [17], Zabandan gave the following important inequalities associated with the Hermite-
Hadamard inequalities and he gave a few inequalities regarding the special cases of these
inequalities.

Theorem 1.1. Let f : [a, b] → R be a convex function on [a, b] and h : [0, 1] → R be a
positive function such that h ∈ L([0, 1]). Then the following inequalities hold

f

(
a + b

2

)
≤ 1

2Ih (b − a)

b∫
a

[
h

(
x − a

b − a

)
+ h

(
b − x

b − a

)]
f(x)dx ≤ f (a) + f (b)

2 (1.2)

where Ih =
1∫
0

h (t) dt.

The theory of fractional calculus has known an intensive development over the last few
decades. It is shown that derivatives and integrals of fractional type provide an adequate
mathematical modelling of real objects and processes see [10]. Therefore, the study of
fractional differential equations need more developmental of inequalities of fractional type,
for some of them, please see ( [1, 2, 9, 12–15,18–21]). Let us begin by introducing this type
of inequality.

We give some necessary definitions and mathematical preliminaries of fractional calculus
theory which are used throughout this paper.

Definition 1.2. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jα
a+f and Jα

b−f of order
α > 0 with a ≥ 0 are defined by

Jα
a+f(x) = 1

Γ(α)

∫ x

a
(x − t)α−1 f(t)dt, x > a
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and

Jα
b−f(x) = 1

Γ(α)

∫ b

x
(t − x)α−1 f(t)dt, x < b

respectively where Γ(α) =
∫∞

0 e−tuα−1du. Here is J0
a+f(x) = J0

b−f(x) = f(x).

Now, let’s recall the basic expressions of Hermite-Hadamard inequality for fractional
integrals is proved by Sarikaya et al. in [13] as follows:

Theorem 1.2. Let f : [a, b] → R be a function with a < b and f ∈ L1([a, b]). If f is a
convex function on [a, b], then the following inequalities for fractional integrals hold:

f

(
a + b

2

)
≤ Γ(α + 1)

2 (b − a)α

[
Jα

a+f(b) + Jα
b−f(a)

]
≤ f (a) + f (b)

2 (1.3)

with α > 0.

In this paper, we introduce a novel extension of the Hermite-Hadamard inequalities for
convex functions by utilizing a recently established generalized identities that are proven
rigorously. Additionally, we derive new inequalities that have strong connections with
both the left and right-hand sides of the Hermite-Hadamard inequalities for Riemann and
Riemann-Liouville fractional integrals. Our findings not only expand upon previous research
but also offer valuable insights and techniques for addressing a broad range of mathematical
and scientific problems.

2. MAIN RESULTS

To prove our main results, we require the following lemma:

Lemma 2.1. Let f : I ⊂ R → R be differentiable function on I◦, the interior of the interval
I, where a, b ∈ I◦ with a < b, h : [0, 1] → R be a positive differentiable function, and
f ′ ∈ L [a, b] . Then the following identities hold:

f (a) + f (b)
2 − 1

2Ih (b − a)

b∫
a

[
h

(
b − x

b − a

)
+ h

(
x − a

b − a

)]
f (x) dx (2.1)

= b − a

4Ih

1∫
0

 1∫
t

H(s)ds

−

 t∫
0

H(s)ds

 f ′ (ta + (1 − t) b) dt

and

1
2Ih (b − a)

b∫
a

[
h

(
b − x

b − a

)
+ h

(
x − a

b − a

)]
f (x) dx − f

(
a + b

2

)
(2.2)

= b − a

2Ih


1
2∫

0

 t∫
0

H(s)ds

 f ′ (at + (1 − t) b) dt
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−
1∫

1
2

 1∫
t

H(s)ds

 f ′ (at + (1 − t) b) dt


where H(s) = h (s) + h (1 − s) .

Proof. By integration by parts, we have

b − a

4Ih

1∫
0

 1∫
t

H(s)ds

−

 t∫
0

H(s)ds

 f ′ (ta + (1 − t) b) dt

= −

 1∫
t

H(s)ds

−

 t∫
0

H(s)ds

 f (at + (1 − t) b)
b − a

∣∣∣∣∣∣
1

0

− 2
b − a

1∫
0

H(t)f (ta + (1 − t) b) dt

= 2

 1∫
0

h (s) ds

 f (a) + f (b)
b − a

− 2
b − a

1∫
0

H(t)f (ta + (1 − t) b) dt.

Using the change of the variable and by multiplying the result by b−a
4Ih

, we obtain desired
equality (2.1).

Using a similar method, by integration by parts, we have
1
2∫

0

 t∫
0

H(s)ds

 f ′ (at + (1 − t) b) dt −
1∫

1
2

 1∫
t

H(s)ds

 f ′ (at + (1 − t) b) dt

= − 1
b − a


1
2∫

0

H(s)ds

 f

(
a + b

2

)
+ 1

b − a

1
2∫

0

H(t)f (at + (1 − t) b) dt

− 1
b − a


1
2∫

0

H(s)ds

 f

(
a + b

2

)
+ 1

b − a

1∫
1
2

H(t)f ′ (at + (1 − t) b) dt

= 1
b − a

1∫
0

H(t)f (at + (1 − t) b) dt − 2
b − a

 1∫
0

h (s) ds

 f

(
a + b

2

)
.

Using the change of the variable and multiplying the result by b−a
2Ih

, we obtain desired equality
(2.2). □

Remark 2.1. In Lemma 2.1,
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i) we choose h(t) = t on [0, 1], then the equalities (2.1) and (2.2) become the following
equalities, respectively,

f (a) + f (b)
2 − 1

b − a

b∫
a

f (x) dx = b − a

2

1∫
0

(1 − 2t) f ′ (at + (1 − t) b) dt

which is proved by Dragomir and Agarwal in [3], and

1
b − a

b∫
a

f (x) dx − f

(
a + b

2

)
= (b − a)


1
2∫

0

tf ′ (at + (1 − t) b) dt −
1∫

1
2

(1 − t) f ′ (at + (1 − t) b) dt


which is proved by Kirmanci in [6].

ii) we choose h(t) = tα−1

Γ(α) on [0, 1] for α > 0, then the equality (2.1) becomes the following equality

f (a) + f (b)
2 − Γ (α + 1)

2 (b − a)α [Jα
a+f (b) + Jα

b−f (a)] = b − a

2

1∫
0

[(1 − t)α − tα] f ′ (at + (1 − t) b) dt

which is proved by Sarikaya et al. in [13].

Corollary 2.1. With the assumptations in Lemma 2.1, if we take h(t) = tα−1

Γ(α) on [0, 1] for
α ≥ 1, then the equality (2.2) reduse to

Γ (α + 1)
2 (b − a)α [Jα

a+f (b) + Jα
b−f (a)] − f

(
a + b

2

)

= b − a

2


1
2∫

0

[tα − (1 − t)α + 1] f ′ (at + (1 − t) b) dt

−
1∫

1
2

[(1 − t)α − tα + 1] f ′ (at + (1 − t) b) dt

 .

Theorem 2.1. With the assumptations in Lemma 2.1. If |f ′| is convex on [a, b], then we
have the following inequalities∣∣∣∣∣∣f (a) + f (b)

2 − 1
2Ih (b − a)

b∫
a

[
h

(
b − x

b − a

)
+ h

(
x − a

b − a

)]
f (x) dx

∣∣∣∣∣∣ (2.3)

≤ b − a

4Ih

(∣∣f ′ (a)
∣∣+ ∣∣f ′ (b)

∣∣)

×

Ih +

1
2∫

0

H(s)
(

s2 − 1
4

)
ds +

1∫
1
2

H(s)
(1

4 − s2
)

ds


and ∣∣∣∣∣∣ 1

2Ih (b − a)

b∫
a

[
h

(
b − x

b − a

)
+ h

(
x − a

b − a

)]
f (x) dx − f

(
a + b

2

)∣∣∣∣∣∣ (2.4)
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≤ b − a

2Ih

(∣∣f ′ (a)
∣∣+ ∣∣f ′ (b)

∣∣)

×


1
2∫

0

H(s)
(

1
8 − s2

2

)
ds +

1∫
1
2

H(s)
(

s2

2 − 1
8

)
ds



where Ih =
1∫
0

h(s)ds.

Proof. We take absolute value of (2.1) and by using the convexity of |f ′|, we have

∣∣∣∣∣∣f (a) + f (b)
2 − 1

2Ih (b − a)

b∫
a

[
h

(
b − x

b − a

)
+ h

(
x − a

b − a

)]
f (x) dx

∣∣∣∣∣∣
≤ b − a

4Ih

1∫
0

∣∣∣∣∣∣
 1∫

t

H(s)ds

−

 t∫
0

H(s)ds

∣∣∣∣∣∣ (t ∣∣f ′ (a)
∣∣+ (1 − t)

∣∣f ′ (b)
∣∣) dt

= b − a

4Ih


1
2∫

0

 1∫
t

H(s)ds

−

 t∫
0

H(s)ds

 (t ∣∣f ′ (a)
∣∣+ (1 − t)

∣∣f ′ (b)
∣∣) dt

+
1∫

1
2

 t∫
0

H(s)ds

−

 1∫
t

H(s)ds

 (t ∣∣f ′ (a)
∣∣+ (1 − t)

∣∣f ′ (b)
∣∣) dt


= b − a

4Ih


( |f ′ (a)| + 3 |f ′ (b)|

8

) 1∫
0

H(s)ds

−

1
2∫

0

H(s)
((1

4 − s2
) ∣∣f ′ (a)

∣∣+ (
(1 − s)2 − 1

4

) ∣∣f ′ (b)
∣∣) ds

+
(3 |f ′ (a)| + |f ′ (b)|

8

) 1∫
0

H(s)ds

−
1∫

1
2

H(s)
((

s2 − 1
4

) ∣∣f ′ (a)
∣∣+ (1

4 − (1 − s)2
) ∣∣f ′ (b)

∣∣) ds


= b − a

4Ih

(∣∣f ′ (a)
∣∣+ ∣∣f ′ (b)

∣∣)


1∫
0

h(s)ds +

1
2∫

0

H(s)
(

s2 − 1
4

)
ds +

1∫
1
2

H(s)
(1

4 − s2
)

ds

 .
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Note that, by changing the order of the integrals
1
2∫

0

 1∫
t

H(s)ds

−

 t∫
0

H(s)ds

 (t |f ′ (a)| + (1 − t) |f ′ (b)|) dt

=

1
2∫

0

 1∫
0

H(s)ds −
t∫

0

H(s)ds

 (t |f ′ (a)| + (1 − t) |f ′ (b)|) dt

−

1
2∫

0

 t∫
0

H(s)ds

 (t |f ′ (a)| + (1 − t) |f ′ (b)|) dt

=

1
2∫

0

1∫
0

H(s) (t |f ′ (a)| + (1 − t) |f ′ (b)|) dsdt − 2

1
2∫

0

t∫
0

H(s) (t |f ′ (a)| + (1 − t) |f ′ (b)|) dsdt

=
1∫

0

1
2∫

0

H(s) (t |f ′ (a)| + (1 − t) |f ′ (b)|) dtds − 2

1
2∫

0

1
2∫

s

H(s) (t |f ′ (a)| + (1 − t) |f ′ (b)|) dtds

=
(

|f ′ (a)| + 3 |f ′ (b)|
8

) 1∫
0

H(s)ds −

1
2∫

0

H(s)
((

1
4 − s2

)
|f ′ (a)| +

(
(1 − s)2 − 1

4

)
|f ′ (b)|

)
ds,

1∫
1
2

 t∫
0

H(s)ds

−

 1∫
t

H(s)ds

 (t |f ′ (a)| + (1 − t) |f ′ (b)|) dt

=
1∫

1
2

1∫
0

H(s) (t |f ′ (a)| + (1 − t) |f ′ (b)|) dsdt − 2
1∫

1
2

1∫
t

H(s) (t |f ′ (a)| + (1 − t) |f ′ (b)|) dsdt

=
1∫

0

1∫
1
2

H(s) (t |f ′ (a)| + (1 − t) |f ′ (b)|) dtds − 2
1∫

1
2

s∫
1
2

H(s) (t |f ′ (a)| + (1 − t) |f ′ (b)|) dsdt

=
(

3 |f ′ (a)| + |f ′ (b)|
8

) 1∫
0

H(s)ds −
1∫

1
2

H(s)
((

s2 − 1
4

)
|f ′ (a)| +

(
1
4 − (1 − s)2

)
|f ′ (b)|

)
ds,

1∫
1
2

H(s)
(

1
4 − (1 − s)2

)
ds =

1
2∫

0

H(s)
(

1
4 − s2

)
ds,

and
1
2∫

0

H(s)
(

(1 − s)2 − 1
4

)
ds =

1∫
1
2

H(s)
(

s2 − 1
4

)
ds.

This proves the inequality (2.3).
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Similarly, if we take absolute value of (2.2), by using the convexity of |f ′|, and by changing the
order of the integrals, we have∣∣∣∣∣∣ 1

2Ih (b − a)

b∫
a

[
h

(
b − x

b − a

)
+ h

(
x − a

b − a

)]
f (x) dx − f

(
a + b

2

)∣∣∣∣∣∣
≤ b − a

2Ih


1
2∫

0

 t∫
0

H(s)ds

 (t |f ′ (a)| + (1 − t) |f ′ (b)|) dt

+
1∫

1
2

 1∫
t

H(s)ds

 (t |f ′ (a)| + (1 − t) |f ′ (b)|) dt


= b − a

2Ih
(|f ′ (a)| + |f ′ (b)|)


1
2∫

0

H(s)
(

1
8 − s2

2

)
ds +

1∫
1
2

H(s)
(

s2

2 − 1
8

)
ds


which implies desired inequality (2.4).

Remark 2.2. In Theorem 2.1,
i) we choose h(t) = t on [0, 1], then the inequalities (2.3) and (2.4) become the following inequalities,

respectively, ∣∣∣∣∣∣f (a) + f (b)
2 − 1

b − a

b∫
a

f (x) dx

∣∣∣∣∣∣ ≤ b − a

4

(
|f ′ (a)| + |f ′ (b)|

2

)
which is proved by Dragomir and Agarwal in [3], and∣∣∣∣∣∣ 1

b − a

b∫
a

f (x) dx − f

(
a + b

2

)∣∣∣∣∣∣ ≤ b − a

4

(
|f ′ (a)| + |f ′ (b)|

2

)
(2.5)

which is proved by Kirmaci in [6].

Corollary 2.2. With the assumptations in Theorem 2.1, we have∣∣∣∣f (a) + f (b)
2 − Γ (α + 1)

2 (b − a)α [Jα
a+f (b) + Jα

b−f (a)]
∣∣∣∣ ≤ b − a

2

(
|f ′ (a)| + |f ′ (b)|

α + 1

)(
1 − 1

2α

)
.

Proof. Let h(s) = sα−1

Γ(α) on [0, 1] for α ≥ 1, then the inequality (2.3) reduce to∣∣∣∣f (a) + f (b)
2 − Γ (α + 1)

2 (b − a)α [Jα
a+f (b) + Jα

b−f (a)]
∣∣∣∣ (2.6)

≤ b − a

4Ih
(|f ′ (a)| + |f ′ (b)|) 1

Γ (α)

×

 1∫
0

sα−1ds +

1
2∫

0

[
sα−1 + (1 − s)α−1

](
s2 − 1

4

)
ds +

1∫
1
2

[
sα−1 + (1 − s)α−1

](1
4 − s2

)
ds

 .

By calculating the above integrals
1
2∫

0

[
sα−1 + (1 − s)α−1

](
s2 − 1

4

)
ds (2.7)
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=

1
2∫

0

[
sα+1 + s2 (1 − s)α−1

]
ds − 1

4

1
2∫

0

[
sα−1 + (1 − s)α−1

]
ds

=

1
2∫

0

sα+1ds +
1∫

1
2

(
sα−1 − 2sα + sα+1) ds − 1

4

1
2∫

0

[
sα−1 + (1 − s)α−1

]
ds

= 1
2α+2 (α + 2) +

(
1
α

− 2
α + 1 + 1

α + 2

)
−
(

1
2αα

− 2
2α+1 (α + 1) + 1

2α+2 (α + 2)

)

−1
4

1
2∫

0

[
sα−1 + (1 − s)α−1

]
ds

=
(

1 − α

α (α + 1) + 1
α + 2

)
− 1

2α

1
α (α + 1) − 1

4

1
2∫

0

[
sα−1 + (1 − s)α−1

]
ds,

and
1∫

1
2

[
sα−1 + (1 − s)α−1

](1
4 − s2

)
ds (2.8)

= 1
4

1∫
1
2

[
sα−1 + (1 − s)α−1

]
ds −

1∫
1
2

[
sα+1 + s2 (1 − s)α−1

]
ds

= 1
4

1
2∫

0

[
sα−1 + (1 − s)α−1

]
ds −

1∫
1
2

sα+1ds −

1
2∫

0

(
sα−1 − 2sα + sα+1) ds

= 1
4

1
2∫

0

[
sα−1 + (1 − s)α−1

]
ds −

(
1

(α + 2) − 1
2α+2 (α + 2)

)

−
(

1
2αα

− 1
2α (α + 1) + 1

2α+2 (α + 2)

)

= 1
4

1
2∫

0

[
sα−1 + (1 − s)α−1

]
ds − 1

(α + 2) − 1
2α

1
α (α + 1) .

If the integral values of (2.7) and (2.8) are written in (2.6), the desired result is achieved. This result
is proved by Sarikaya et al. in [13]. □

We can obtain the midpoint inequality for Riemann-Liouville fractional integrals in a simpler way
as follows.

Corollary 2.3. With the assumptations in Theorem 2.1, we have∣∣∣∣ Γ (α + 1)
2 (b − a)α [Jα

a+f (b) + Jα
b−f (a)] − f

(
a + b

2

)∣∣∣∣ (2.9)

≤ (b − a)
2 (|f ′ (a)| + |f ′ (b)|)

[
α

2 (α + 2) + 1
2α (α + 1) − 1

(α + 1) (α + 2)

]
.
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Proof. Let h(s) = sα−1

Γ(α) on [0, 1] for α ≥ 1, then the inequality (2.4) reduce to∣∣∣∣ Γ (α + 1)
2 (b − a)α [Jα

a+f (b) + Jα
b−f (a)] − f

(
a + b

2

)∣∣∣∣
≤ (b − a) Γ (α + 1)

2Γ (α) (|f ′ (a)| + |f ′ (b)|)


1
2∫

0

[
sα−1 + (1 − s)α−1

](1
8 − s2

2

)
ds

+
1∫

1
2

[
sα−1 + (1 − s)α−1

](s2

2 − 1
8

)
ds

 .

Note that
1
2∫

0

[
sα−1 + (1 − s)α−1

](1
8 − s2

2

)
ds = 1

8α
+ 1

2α+1
1

α (α + 1) − 1
α (α + 1) (α + 2) (2.10)

and
1∫

1
2

[
sα−1 + (1 − s)α−1

](s2

2 − 1
8

)
ds = 1

2 (α + 2) + 1
2α+1

1
α (α + 1) − 1

8α
. (2.11)

Therefore, inequality (2.9) follows from (2.10) and (2.11). □

Remark 2.3. If we take α = 1 in Corollary 2.3, then the inequality (2.9) reduce to the inequality
(2.5).
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