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COMPLETE MONOTONICITY OF FUNCTIONS INVOLVING
k-TRIGAMMA AND ik-TETRAGAMMA FUNCTIONS WITH RELATED
INEQUALITIES

EMRAH YILDIRIM!

ABSTRACT. In this paper, by using the Bernstein-Widder theorem and properties on k-
special function, we present several complete monotonicity properties on the function
related to k-trigamma and k-tetragama functions. As an immediate consequence, we give

1
the double-sided inequality on the function [¢},(z)]* + Ew;’ (z). All the results obtained in
this work are not just the k-generalizations of classical ones but also are the improvements

of the bounds of recent results on the function [¢},(z)]* + %wz (z).

1. INTRODUCTION

The second kind of Eular integral, also known as the gamma function, is defined by the
improper integral
o
I'(z) = / t"Le~tdt
0

for all positive real values of x. The logarithmic derivative ¥(x) = %F(m) = FF/((;C)) of
the function is called the psi or digamma function and its derivatives are generally called
polygamma functions. In particular the first and second derivatives of digamma functions
are called trigamma and tetragamma functions, respectively. These functions play major
roles in the theory of special functions and have applications in many other branches.
Many researchers interest in these functions and obtain complete monotonicity properties,
convexity and/or concavity and inequalities on the special functions or related to these
functions (some researches related to this work can be found in [I-3,5,6, 810, 15] and
references therein). Some of the researchers find several generalizations of these functions,
such as; Diaz and Pariguan in [1] introduced k-generalized Pochhammer symbol as follows:
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Definition 1.1. [1] Let x € C, k € R and n € NT, the Pochhammer k-symbol is given by
(@) =x(x+E)(x+2k)...(x+ (n - 1)k).

By using the Definition 1.1, they defined k-gamma function I'y as the following limit
expression.

Definition 1.2. [{] For k > 0, the k-gamma function I';, is given by
nlk™ (nk) s !

T =1l , e C\kzZ".
Also in the paper [1], they obtained integral and infinite product representations of the
function by
o0 tk
Tp(z) — / e dt, (1.1)
0
! kF %Wﬁ (1+ x) ~ (1.2)
= x e — e n .
T(x) it nk

for x € C, Re(x) > 0. They proved the k-generalization of Bohr-Mollerup Theorem, Stirling
formula and found some properties on k-gamma function such as

Ti(z + k) = aT(2), (1.3)
Tp(z) = ki 'T (i) (1.4)

The k-special functions have also been used in many applications, for instance; combina-
torics, fractional calculus, theory of inequality etc. In [12], authors gave several integral
representations of k-digamma function, one of them is defined by

Ink vy, [Ltht ¢!
- _ 7 —dt 1.5
W (‘73) L L + 0 1— tk ( )
for z, k > 0. Applying logarithmic derivative of the equation (1.4) leads us to the recurrence

formula for k-digamma function by

1
Yi(e+k) = — + () (1.6)
and for the first and second derivatives of the equation (1.6), we get
1
Utk = U - (17)
2
p@t+k) = Y@+ (1.8)

respectively for =, k& > 0 that are called recurrence formulas on k-trigamma 1;(x) and
k-tetragamma 1} (x) functions respectively.

Yildirim in [13] used Binet’s first formula for In 'y (z) and complete monotonicity proper-
ties on k-digamma function and its derivatives to obtain following inequalities:
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Corollary 1.1. [13] The following inequalities
hli 1 k Inx 1

K or 1o W@ <m0 (1.9)

1 1 k k3 1 1 k

Sy Py . 1.1
kx + 222 + 6x3  30x° <i(@) < kx + 2z2 623 (1.10)
and
1k, 11
L S 111
kx?2  x3 22t < ¥r(@) < kx?  x3 ( )

are valid for all z,k > 0.

By using previous inequalities (1.10) and (1.11) and the recurrence formula (1.7), the

author in [11] mentioned that the following double-sided inequality
ST s < W@ + (o) < gt (1.12)
is valid for all positive real values of x and k, where functions p; and ¢q; are defined by
pe(z) = 752 4 900kx? + 4840Kk%2® + 15370k327 + 31865k 25 + 45050k525 (1.13)
+44101k52* + 29700k7 23 + 13290k32% + 3600k°z + 450k'7,
ar(x) = 2128 +132ka® + 35222 + 504k323 4+ 408k*22 + 180k°z + 36k5.  (1.14)

Also in the same paper, the following lemmas were obtained:

Lemma 1.1. [14] For all positive real values of x, k and r, we have
1 k.?”/k’—]. o0
— = tr/E ety 1.1
= T ‘ (1.15)

By taking r = nk and using the equation I'y(nk) = (n — 1)!k"~! for n € Z*, the equation
(1.15) becomes

1 1 1 —at
—_— = t" “dt. 1.16
z (n—1)! /0 ¢ (1.16)

Lemma 1.2. [11] For all positive real values of x and k and positive integer n, k-digamma
and k-polygamma functions are defined by the following integrals:

_ Ink—~n oo gt _ o=t
(n) _ n+1 ° " —xt
VM(z) = (1t /0 et (1.18)

Author used the well-known Bernstein-Widder theorem:

Theorem 1.1. [11, Theorem 12b] A necessary and sufficient condition that f(x) should be
completely monotonic for 0 < x < 0o is that

f@) = [ e idatt)

where a(t) is a non-decreasing function and the integral converges for 0 < x < co.
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Then the author showed complete monotonicity on the function [¢},(z)]* + 4} (z) — pr(z)
and qi(z) — [¢},(x)]> — £¢}(x), where the functions pj and g are defined by (1.13) and
(1.14), respectively. Hence the author obtained simpler bounds for the inequality (1.12) as
follows:

Theorem 1.2. The functions

ZL‘2 2
Pla) = @) + 90 ~ i (119
and
Q) = e — @) - 1@ (1.20)

are completely monotonic. As an immediate consequence, the following double-sided inequal-
ity
x4+ 12k

x? + 12k , a2 1,
5 < [Vi(x)]” + %wk(fﬁ) < 2z + )

124 (z + ) (121)

1s valid for all positive real values of x and k.

It is worth to mention that the left side of inequality (1.21) is better than inequality (1.12)
for 0 < x < 1.8157k and k > 0. Also the upper bound in (1.21) is better than inequality
(1.12) for « > 6.58818k.

Motivated by above results and classical developments, our aim in this paper is to give some
complete monotonicity of the functions related to k-trigamma and k-tetragamma functions

1
and then to establish double-sided inequality for the function [/} (x)]? + Eﬂ)g(x)

2. MAIN RESULTS
Now, we give our main results.
Theorem 2.1. The functions

22 + 3kx + 3k?

1
P(z) = [v 2“2 — 2.1
(@) = WA+ 396) ~ i e (2.1
and
62522 + 2275k + 5043k> ;a2 1o,
_ _ _Z 2.2
are completely monotonic and the following inequalities
22 + 3kx + 3k? , o2 1o, 62522 + 2275kz + 5043k>
- 2.3
3zt (22 + k)2 < (@) + l{:q’bk(x) < 3x4(50x + 41k)?2 (2:3)

hold for all x, k > 0.
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Proof. By using the recurrence formulas (1.7) and (1.8), we get

P@) — Pla+k) = [h@) — gl + )] [0h) + i+ B)] + 1 [0) — (e + 1)
22 + 3k + 3k (z+ k)% + 3k(z + k) + 3k?

3242z + k)2 3(z + k)4 + (2z + 3k)2

1 {21#’(%)—1} 2 |2 +3ke+3k (x4 k)’ +3k(x+k)+ 3K
I x2] ka2l 3zt(2x + k)2 3(xz + k)* + (22 + 3k)?
2 T )_L 1 2 (2P 43k 3K (x+ k) +3k(z + k) + 3K
T o2 R T T2 2 3zt (2 + k)2 3(z+ k) + (2z + 3k)?

2
= EF(@

where
o, 14 23 5k k?
Flo) = ot g - 2 e an 3@ i 2@t hp 2t
3 7 41 21

k(x + k/2)  24(x L k/2)2  2k(z +3k/2) | B(z + 3k/2)?

for all z, k > 0. By using the equation (1.16) and integral representation of k-trigamma
function (1.18), we get

— OO& —(z+3k/2)t
Fla) = /0 24k(ekt —1)° dt

where

f(t) = 122 — (Tkt 4 36)e?M + 2(k3t> — 15k%% + 104kt — 252)*4/2 1 (T0kt + 528) M
—2(k3t3 — 15k2t? — 92kt — 246)eM/? — 63kt — 492.

Straightforward differentiating leads us to
') = k [3065’“/2 — (14kt + 79)e?* + (k313 — 39k2t? 4 252kt — 548)e3F/2 4 (T0kt + 598)ert
— (K5 — 9k + 32kt — 62)*"/2 — 63)]

]{22
') = ?ekt/ 2 [15062’“ — 8(7kt + 43)e®*/2 1 3(3k3% — 33k%t% + 200kt — 380)ert

+4(35kt + 334)e"/? — k343 4 3K%t2 + Akt — 2} = ’“226’“/2 fi(t),

() = k [30062’“ — 4(21kt + 143)e3F/% 4 (9K3% — T2kt + 402kt — 540)e
+(70kt + 808)e*/? — 3k%2 + 6kt + 4] :

Tt = K [600@2’“ — 6(21kt + 157)e3F/2 4+ 3(3k3t> — 15k%t> + 86kt — 46)e"
+(35kt + AT4)eM/? — 6kt + 6] ,
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k?’
) = 5 (24006 — 54(7ht + 57)e™/2 4+ 6(3K** — 6k + 56kt + 40)™
+(35kt + 544)eM/2 — 12]
ki4
) = 7 1960072 — 54(21kt + 185)er" + 12(3K% + 3K + 44kt + 96)e*/2

4
+35kt + 614] = %ekt/Q fa(1),
W) = k [1440063’“/ 2 _ 54(21kt 4 206)et + 6(3K33 + 21k%2 + 56kt + 184)eFt/2 4 35} ,
§(t) = 3K2H/? [7200eM — 18(21kt + 227)eM/? 4 3K3® 4 39k%2 + 140kt + 296

= 3P f3(1),
1) = k [72006’“ — 9(21kt + 269)eF/2 + 9k24> + T8kt + 140} ,
1" 3k kt kt/2
J0 = 5 [4800€** — 3(21kt + 311)et*/2 + 12kt + 52] ,
9k3
@ = - [38200¢* — (21kt + 353)eM/? 4 8],
9k* 9k4
o= = [6400€*/2 — 21kt — 395 = "2 h),
fit) = & [3200¢M/2 — 21]
and
T(t) = 1600k2eF/2.

By the aid of the these results, it is easy to conclude that the functions fi(n) are positive
and non-decreasing for 0 < ¢ < 4 and n € Z'. Therefore the function o/ defined by

—3kt
o(t) =

ft)e™=
 24k(eF — 1)
the Bernstein-Widder theorem 1.1, we get that the function F is completely monotonic for all

is positive. It means that the function « is non-decreasing. Hence due to

positive real values of 2 and k. Since two functions 2/z* and F(z) are completely monotonic
and the product of two completely monotonic functions is also completely monotonic, then
the function P(z) is completely monotonic. Furthermore we have that the function P(z) —
P(x + k) > 0, that is, the function P is decreasing and since zlLrgO P(z) = 0, the function
P(x) is positive. Hence we get the left side of the inequality (2.3).

For the second part, using the equations (1.7) and (1.8) leads us to

1
Q(x) — Qz+k) = [Yr(z+k) — ()] [Y (2 + k) + ()] + T [y (z + k) — Yy (z)]
62537 + 2275kx + 5043k*  625(z + k)* + 2275k(z + k) + 5043k°
3z4(50x + 41k)? 3(z + k)4(50x + 91k)?

1., 1 2 625(x + k)% + 2275k (x + k) 4 5043k2
= g |20k() = 5|+ 5 - 1 3
x x kx 3(z + k)*(50z + 91k)
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62522 + 2275kx + 50431#]

324(50x + 41k)2
2 |2? (62527 + 2275kx + 5043k%  625(x + k)? 4 2275k(x + k) + 5043k°
o222 324 (50 + 41k)2 3(x 4 k)4(50x + 91k)2
1 1 ,
i+ gy~ Y)
2
where
61 1 122943275 291573 20111k k>
G(z) = Toogera T POl N 5 T 3 4
10086kz 22 ' 16954566k(x + k)  68921(x + k)2 ' 10086(x + k)3 2(x + k)
. 10025 N 117 B 122943275
10086k (z + 41k/50) ~ 328(z + 41k/50)2 16954566k (x + 91k /50)
968877 )
~551368(s + 91k/50)2  VR(@):

By using the equation (1.16) and integral representation of k-trigamma function (1.18), we
obtain

0o o—91kt/50

= t) e "dt
Glz) o Grsiszeane =1y 9 ¢

g(t) = 410164 1#/50 4 (24191271kt + 67408100)e2*
— (56515223 — 67613182k2t% 4 354726096kt — 491362936)e”1+t/50
—(143363142kt + 559181200)¢"*
+(5651522k3t% — 67613182k + 286907832kt — 491773100)e*1+4/50
+119171871kt + 491773100.

Similarly, differentiating the function g yields that

k
J(t) = 5% [289165626141’“/ 50 4 42025(28782kt + 94591)eFt

—(257144251%33 — 2652535631%%% 4 12759378268kt — 13488861188)e"11)/50
+41(2825761%3t3 — 23468441k%t% 4 60998816kt — 70942750)1F?/50

—50(71681571kt — 207909029)e** + 2979296775} :

LAkt /50
g'(t) =~ [4077235242¢*" + 8405000(14391kt + 54491)e*/0

—(23400126841k3t3 — 202809104771kt? + 895849859288kt — 589517454708k

—(179203927500kt — 340568645000)%t/%0 1 4750104241kt — 22072019171k%>

L ed1kt/50

+6318401596kt + 5792810050] = 0

91(t),
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g, (t) = k[8154470484¢?*! + 168100(849069kt + 3934519)e>k*/50
—(23400126841k3t> — 132608724248k>t> + 490231649746kt 4 306332404580)c*
—450(71681571kt 4 262003492)e%t/°0 1 2825761 (5043k%t> — 15622kt + 2236)],
g (t) = k?[16308940968¢%F" + 198358(849069kt + 4654069) /50
—(23400126841K%t> — 62408343725k%t% + 225014201250kt + 796564054326) et
—81(71681571kt + 660234442)e”*/%0 4 5651522(5043kt — 7811)],

5851561
g (1) = k(32617881936 + 55 (849069kt + 5373619)e9k/50
—(23400126841%% + 7792036798k%¢? + 100197513800kt + 1021578255576)c"!

729
— 5 (T1681571kt + 1058465392)e”%/59 4 28500625446],

4_9kt/50
), ke

—1250(23400126841k%t3 4 77992417321k%> + 115781587396kt + 1121775769376)e1+t/50
49kt /50

1250
A1k
gh(t) = 7[723957867360()e91k”f/50 + 16841078(849069kt + 6942238)e"* — 11470799691

[81544704840000”1#/°0 4+ 345242099(849069kt + 6093169)er*

—470302787331/2kt — 4778692349931] = g2(t),

—50(23400126841k3t% + 163602637471k + 306006995496kt + 1262972827176)e 1+1/50],
1681k2641kt/50
gp(t) = ——F——

—1681(13920361k3t% 4 148252741k*t> + 419415716kt + 973320696)] =
1848411

[321366663072¢"* + 410758(849069kt + 7791307) /50

1681k2€41kt/50

> g3(t),

g5(t) = k[321366663072¢" + (849069kt + 12508357)k/50

—1681(41761083k2t? + 296505482kt 4 419415716)],

1
g3 (t) = k*[321366663072e* + %(8490691% + 17225407)#1/°0
—305942(458913kt + 1629151)],

149721291
aP(t) = K3[321366663072¢"" + W(849069kt + 21942457)e”#/°0 — 140400761046]
and
(4) Ok Iht/50 41kt /50

g5 () = m[1115856469000000006 /50 4 127123706828079kt + 3991495805463537].

Hence one can get that the function g is positive and increasing for all x, kK > 0, which
implies that the function « is non-decreasing. So the function G is completely monotonic
for all real values of x and k according to Bernstein-Widder theorem 1.1. Moreover we have
that since the function g is positive, the functions G and @Q are also positive. Thus we get
the right hand side of the inequality (2.3). O

Remark 2.1. The inequality (2.3) is a refinement of the inequality (1.12) for all positive real
values of z and k. Also the lower bound of the inequality (2.3) is somewhat better than the
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(V819 +9) k
lower bound of the inequality (1.21) for £ > 0 and z > ~————*— and the upper bound
of inequality (2.3) is better than the upper bound of the inequality (1.21) for all positive real
values of z and k. The inequality (2.3) is also a k-generalization of the inequality obtained

by Anis et.al. in [2, eq. (15)].

Since the function F' and G in the proof of Theorem 2.1 are positive, as an immediate
consequence, we get the following result:

Corollary 2.1. The following double-sided inequality

54k°4+477k8x+1977k" £24+4962k0 23 +8157k5 4 +8968k% 25 +6536k3 20 +3040k% 27 +816kx3 +962° < W ( x)
6kx?(k+x)*(k+22)2(3k+22)? k

< 83522166k +630089005k5 £+2205760185k7 22 +4676259010k5 23 —3824275k5 15 +6534723072k5 21 —9327500k* 26

46165903591 k%25 —5687500k3 27 +3894815200k3 2641576227500k 27 4+-366750000k25 4375000002 (2 4)
6kx2(k+z)%(41k+502)2(91k+502)2 )

s valid for all positive real values of x and k.

Remark 2.2. When investigating the behavior of the k-trigamma function in the neighbor-
hood of = 0, the inequality (2.4) is more advantageous than the inequality (1.10). Because
the inequality

kK _ a® |2 + 43k + 3k (v +k)* + +3k(z + k) + 3k
623 30x® 2 3zt (22 + k)2 3(z + k)*(2x + 3k)?

is valid for 0 < k and 0 < 5 0.821017k. So the lower bound of the inequality (2.4) is

somewhat better than the lower bound of the inequality (1.10) at these intervals. Also the

inequality

x® [ 6250° 4 2275kx + 5043k 625(x + k)* + 2275k(z + k) + 50431@2] k

2 324 (502 + 41k)2 3(x + k)4(50a + 91k)2 623

holds for 0 < k and 0 < x 5 1.54387k. Therefore the upper bound of the inequality (2.4) is
more useful than the upper bound of the inequality (1.10) for these intervals.
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