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ON THE HERMITE-HADAMARD INEQUALITY VIA GENERALIZED
INTEGRALS
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ABSTRACT. In this paper, we use the k-generalized fractional Riemann-Liouville integral
of order a to obtain new integral inequalities of the Hermite-Hadamard type, in the class
of P—functions.

1. INTRODUCTION

Recently, the theory of convexity has had the attention of different researchers due to its
numerous applications in different fields of pure and applied sciences.

A important inequality, due to Hermite and Hadamard is widely studied in the literature,
this inequality is known as Hermite-Hadamard inequality for convex functions [16]; which
establishes the following: let ¢ : I C R — R be a convex function defined on the interval I
of real numbers and (7, (s € I with {; < (2, so the following inequality

1+ G 1 G B(C1) + o(C2)
T S g f, s T

holds.

Definition 1.1. We say that ¢ : I — R is a P—function, or that ¢ belongs to the class P(I),
if ¢ is a non-negative function and for all uy,us € I,6 € [0, 1], we have ¢(du; + (1 — §)ug) <

¢(u1) + ¢(uz).

The fractional calculus is a generalization of classical calculus involved with derivatives
and integrals of non-integer order. It’s first appearance dates back to the correspondence
of G. W. Leibniz and L’Hospital in 1695. Since the 19th century, the theory of fractional
calculus has had a rapid growth, proof of this is that today we can find applications of
fractional calculus in many areas and disciplines. These new applications have given rise to
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new operators which are natural generalizations of the classical Riemann-Liouville fractional
integral. The authors (see [15]) give a generalized operator containing as particular cases,
several of the those reported in the literature.

Today, many classes of convex functions are defined in the literature, and many dif-
ferent generalizations and extensions of the Hadamard inequality have been obtained for
these classes. In [20] authors summarize the main definitions of convex functions and the
relationships between them.

For more information and some other extensions of the integral inequality, including
fractional integral operators, some results can be found in many articles [1-5,7,8,10,12,13,22]
and the references therein.

For example, Alomari et al. in [!] obtained some inequalities of Hermite-Hadamard
type for functions whose second derivatives are quasi-convex. In [3,4] the authors ob-
tained generalized inequalities for some convex functions via fractional integral operators
on sub-intervals of the integration interval. Du et al. in [11] the concept of generalized
semi—(m, h)—preinvex functions was introduced and some estimates for the trapezoid in-
equality are obtained. By using k—fractional integrals But et al. in [7] for the quasi-convex
and s—Godunova-Levin functions, new integral inequalities were obtained. Bessenyei and
Péles in [0], generalized convex functions of high order are studied, as a result, extensions
of the classical Hermite-Hadamard inequality are obtained.

Napoles et al. in [19] obtained new integral inequalities of the Hermite-Hadamard type
for convex and quasi-convex functions in a generalized context. The study [18] authors,
these inequalities for h— convex functions establish via of a certain generalized integral. Xi
and Qi in [25] obtained new integral inequalities for extended s—convex functions. In [23],
Qi et al. introduced generalized k—fractional conformable integrals and generalized some
integral inequalities through them.

Definition 1.2. ([11]) The k—generalized fractional Riemann-Liouville integral of order o
with a € R, and s # —1 of an integrable function ¢(u) on [0, 00), are given as follows (right
and left, respectively):

5% 1 v _F(6,5)¢(9)

Trgr o =5 L (a) / [F(u,8)]) "% (1)
and :

s 8 _ 1 2 F(6,5)¢(0)

Tre oW =7 Li(a) A [ F(, u)]l—%CM (1.2)
with F(8,.) € L[¢1, ¢, F(.,s) € CY[¢1,¢), F(6,0) = 1, F(6,u) = ff F(0,s)d0, F(u,d) =
J5' F(0,5)df, and the Euler gamma functions defined by (see [9,21]):

T(z) = / 55 1e0ds, R(z) >0,
0

Tk(2) :/ 57 e "k 45,k > 0.
0

It is known that Ty(z + k) = 2T (2), Tk(z) = (k)% 'T (%) and I};mi I'k(z) =T(2).
—>
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In the theory of integral inequalities, Holder’s inequality and its other form, the power
mean inequality, are often used.

Theorem 1.1. (Holder inequality [17]) Let g1 > 1 and p% + qil = 1. If 9(¢) and g(¢) are
real functions defined on [C1, (2] and if |p|P*,|g|" € L[(1, (2], then

G2 2 ﬁ G2 i
/ \¢(<)g(c>|d4§</ \<z><<>|p1d<> (/ |g<c>r‘”d<> (13)
G G G

with equality holds, if and only if Al¢p(C)[P* = Blg(¢)|?* almost everywhere, where A and B
are constants.

Theorem 1.2. (Power mean inequality [17]) Let ¢1 > 1 and p% + qil =1. If (¢) and g(Q)
are real functions defined on [C1, (2] and if |p[P*,|g|? € L[(1, (o], then

1

G2 G2 17% ¢2 a
/ \¢<c>g<<>rd<s</ \¢<<>|d¢) (/ |¢(<)Hg(<)!qld4> SO
G G G

The aim of the study is to obtain new Hermite-Hadamard type integral inequalities in
terms of generalized integral operators for functions of p-convex class.

2. MAIN RESULTS

Let ¢ : I — R be a given function, where (q, Cg € I with 0 < (1 < (2 < co. We assume

that ¢ € Loo[C1, (2] such that SJ§C+¢( u) and SJF’“ C_qﬁ( u) are well defined. We define
61

d(u) := ¢(C1 + G — u) and G(u) := ¢(u) + ¢(u), u € [¢1, G-
The following lemma will be useful hereafter (see [14])

Lemma 2.1. For a,k >0 and s # —1. If ¢ € C*(I) and ¢' € L[(1, (2], then we have

HC) + () Tulat+k) [4¢ sp%

2 [(ga,mf{ e O g L) (2.1)
B C2—C1 _ '
= §2’C1 / Aas 5<1 + (1 5)C2)

where

Aos(8) = [F(0¢ 4 (1 =0)C, 0)]* — [F(6¢ + (1 —0)¢r,C)]*
HF(Co, 662 + (1= 0)C1)]* — [F(C, G+ (1 — 6)C2)] %
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Proof. Let us use the method of integration by parts and calculate the integral on the right
side of identity (2.1)

/ Aas 5<l+ 1- )CQ)d(;

Cla S(f%(écl + (1= 90)¢2) ; 7 i 5 /01 (Aa.s(6)) &8¢t + (1 — 8)Ca)db
=[2G ) G) - 20 )G
- [ o)) ot + (1 - )5
= WWQHM@)] & ! G /1 (Aa.s(8)) $(6C1 + (1 — 6)C2)d6.
Thus, we have
m /0 D)0 (5C + (1 5)C2)ds (2.2)

_ o) Fee) 1 /1 (Bas(8)) 6(6¢1 + (1 = 8)Ca)ds.

2 4[F(¢2,¢1)l* Jo
Here
(Bas(6)) = ZIRGG + (1= 8)Ga COIF T F(66 + (1= )2, 0) (61— €2)
k:[ (6C2 + (1= 8)C1, ()] * T F(6¢ + (1= 6)¢1,¢1) (& — C1)
+ B2, 062 + (1= B)G)]F F (o, 862 + (1= 8)G1) (G2 = 1)
= IR, 06+ (1= $)C)IFTF (G561 + (1= 8)C2) (G = Ga),
where

/

8C1+(1-6)¢2
F'(0¢ + (1 = 9)¢2,C1) = </< F(97S)d9> = F(6C1 + (1 —6)¢2, 8),

8¢+ (1-0)C1 !
F' (6o + (1= 8)C1, (1) = </< F (6, s)d@) = F(0Co + (1= 6)Cy, 8),

1 (
(

§¢2+(1-6)G !

F'(¢2,0C + (1 —6)¢1) = — </< F(# s)d9> =—F(6+ (1 —6)(y, 8),
3C1+(1-0)C2

) ( /< F

F'(C2,0¢1 + (1= 0)¢2) = — 0, 8)d9> = —F(0¢ + (1 —0)C,8).
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Finally, for the derivative, we have

/

(Bas(8)) = =ZIFOG + (1= 6)C. ) FTFOG + (1= )2, 8) (G = 1)

(0}

- [F(6¢2 + (1 = 6)C1, C)]* M F(6¢2 + (1= 0)C1, 8) (&2 — G1)

— ZIB(G, 8¢ + (1= )G TR (06 + (1= 8)G1,8) (G2 = G1)
— B2, 061 + (1= 8)G)F TP (061 + (1= 8)Ca,8) (G2 = 1)

(Aas(8)) =— 2 (Czk— ¢1)

F(6¢1 + (1 —0)C2,8) F(6C + (1 —0)C1,8)
[F(6¢1 + (1= 0)Ca, COI' % [F(6¢2 + (1= 6)¢1, o)) *

(2.3)

F(6¢2 + (1 —0)(1,9) F(6¢ + (1 — 8)Ca, s)
F(Goy 3Gz + (L= 0] F  [F(Gor 66+ (1= )@ F |

Thus, taking into account (2.3) for the integral on the right side of (2.2), we obtain:

1 1 ,
FaoT [ (Bl ot66+ (1~ )21

ol —G) /1[ F(6¢ + (1 —0)Ca, 8) N F(6Co + (1 —0)C1,8)
AK[F(Go, ¢)IF oo [[F(8¢ + (1= 0)¢o, Q)% F(6¢ + (1 —8)¢r, Q)]

F(6¢2+ (1 —9)C1,8) L F(6¢1 + (1 —0)¢2, )
[F(C2, 06+ (1= 8)C)I' % [F(C2,0G + (1= 8)G)) *

$(6¢1 + (1 — 0)¢2)do.

After the change of variables:

8¢1 + (1 —6)¢ = w and 0y + (1 — §)¢1 = v and given that 6¢; + (1 — ) =C + G — v,
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we get

[ FEG 0 DG 00G 00y L P,
0 -l ’

[F(5¢1 + (1 — 0)C, G~ % T G-GJo [Fu, )" F

dv,

[P0 (90,0006 0 _06) 5 L[PG -y
o [FOG+ (-0 ) G-Gla  Fo.Q

dv,

/1 F(0G + (1 —0)¢1,8)(06 + (1 = 0)¢)dé 1 /<2 F(v,s)p(C2 + ¢ —v)
0 [F(C2, 6¢2 + (1 — 6)¢1)]' ™ * G-GlJa  [F(Gv))*

° [F(C2, 061 + (1= 8)¢2)]'™* G =G o [F(Gu)=F

Thus, taking into account the last equalities, we have

1

1 /
oo [ (B ot661+ (1~ )21

du

____«a V@ F(u,s) [¢(u) + ¢(Co + ¢ — w)]
AE[F(G2, ¢ [V [F(u, )] *

@ F(v,5)[$(G+G —v) + )]
+ 1 [F(Go, o) % ! 1

_ «Q G2 F(U,S)G(u) " CQM :
- BFGOIF Vc Fu, G “) 1 [F<<2,v>11-%d1

al'y () {

" GGE | a6+ 0]

Féy oteu

The proof is complete.

Now, for o,k > 0, s # —1 and v € [(1, (2], we introduce the following operator:

¢1+¢2 ¢ N

2 o 2 «
p(s,v) = /1 |F(v,w)|*dw — /<1+<2 |F(v,w)|*dw.

2

By using Lemma 2.1, we can get the following result
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Theorem 2.1. For a,k > 0 and s # —1. If ¢ € C((1,(2) such that ¢' € L[(1, (] and
¢/ € P([G1,G2]), then

¢(C1) +6(C2)  Trlatk) [, G(G) + T} G(Cl)}

2 ARG aNEL TR PG
(2.4)
< U@+ 1)) (pls, G2) = p(5,G1))
B 2[F((2, )] ®
Proof. By using the Lemma 2.1 and since |¢'| is P—function, we have
(C1) +6(G)  Twla+k) [,,2 7%
2 A[ F(C2, G1)]* { JF’GG(@) " JF’Q_G(CI)}
(2.5)

G2 —C , , 1
< m (I" (¢l + [ (CQ)\)/O |Ag.(6)]d6.

Observe that

1 1 G2
| 18as()1d8 = [h(w)duw.
0 G2 —C1Ja

where
h(w) = [F(w,(1)]F — [F(G+ G —w,Q)]F + [F(G, & + G — w)]* — [F(G,w)]x.

Note that h is non-decreasing function on [(i,(2]. Moreover, we have h(¢1) < 0 and

h(%) = 0. Thus, we obtain

if we {Cl, 41'542], then h(w) <0

if we (Q;@,Cg}, then h(w) > 0.



8 EDGARDO PEREZ REYES, JUAN E. NAPOLES VALDES, AND BAHTIYAR BAYRAKTAR

Thus, we get ; fgf [h(w)|dw = 7= (A1 + A2 + A3 + A4), where
SES) ¢
2 a 2
ne= [m«@,wnkdw-/;ﬁ2[<@, w)% dw,
C1+¢2

2 o G2
)\2:—/ [Flw, ) dw+ [ [Flw,G)]Edw,

¢1+¢2
2

M:/ m@+@—w®ﬁm—ﬂ

1+¢2
S! T

C2

[F(CQ + <1 —w, Cl)]%dwa

¢1+¢2

u o C2 a
Ay = _/c [F(C2s G2+ C1 — w)] P dw + /m [F(C2s G2 + G1 — w)] Fdw.

We note that \; = p(s,(2) and Ao = —p(s,(1), and by using the change of variable r =
(2 + (1 — w, we obtain that \3 = —p(s, (1) and Ay = p(s, (2). Therefore, we get

1 _
/ |Aa73(5)’d6 _ 2([)(8,(2) p(57<1)). (26)
0 Q-G
Therefore, the inequality (2.4) follows from (2.5) and (2.6). O

Remark 2.1. In the Theorem 2.1 if we consider F' = 1, this result becomes Theorem 2.1 of
[21]. If we additionally make k = o = 1, Corollary 2.2 of said work follows.

If we impose additional conditions on the derivative of the function ¢, we can obtain new
refinements of the previous result, as the following theorems show.

Theorem 2.2. For a,k > 0 and s # —1. If ¢ € C((1,(2) such that ¢' € L[(1,(s] and
|¢/|7 € P([C1,(2]), then we have

¢(Cl) + ¢(C2) Fk’(a + k) sTh STk
po) et Tk e+ %%(mﬂ
(2.7)
_ (/601 + 1@ (p(5,G2) = pl5:60)
2AF (o I ’

where g1 > 1 wzth —|— = =1.
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Proof. From Lemma 2.1 by using the power mean inequality (1.4) and the p convexity of
|¢'|, we get
P(C1) +9(¢2)  Twla+k) {
2 A[ F(Co, C1)]*

JEL )+ Ik G

(G2 —C1) 1 /
< ‘W/o |Aa.s(8)||¢' (8¢ + (1 — 8)¢2)|dd

1

(G2 — 1 ! / 1 n
< m (/ |Aq,s(0 |d5> </0 |Aq,s(0)]|¢'(6¢1 + (1 —6)¢2)|? d5>
X X (2.8)
(G2 —¢) (27 (p(s,C) — p(s,G1))Pr
—A[F(Gs )] E (o — C1)Pr
2(10 qQ / Q1 i
2—Q
_ (FI" + 16" (pls,G2) = pl(s.G)
2[F (G2, 1))
]
Remark 2.2. In the Theorem 2.2 if taking F' = 1, we obtain the Theorem 2.3 of [21].
Lemma 2.2. Let a; € R, wheret=1,2,3,...m and m € N, then
(Se) =meSiar
i=1 i=1
Proof. Notice that
Vi, |ai| < <§: ]ai|n>n thus i i <m (Z |a| >
i=1 i=1 i=1 =
O

Theorem 2.3. For a,k > 0 and s # —1. If $ € CY((1,() such that ¢' € L[(1,(2] and
|¢/|% € P([C1,(2)), then we have

P(C1) + ()  Tila+k) {
2 A[F(C, G1)]®

UE Ol + I GG

mew+w«ﬂﬂ5@—gw u}qé
FGo CTE INCE
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where

g(w) = WWQM YL R(G+ G— w, Q)+ (G G+ G — w)| T+ (G, w)|
andq1>1wzth —i———l

Proof. From Lemma 2.1 by using the Holder’s inequality (1.3) and Lemma 2.2, and the p
convexity of |¢/|?, we get

P(C1) +6(G2)  Tw(a+k) {
2 A[F((o, Q1)]*

If G+ It 6|

(G2 — (1) 1 .
: ‘M/o [Bas(9)]1¢(561 + (1 = 8)¢2)ldd

L 1 (2.10)
K2 = ¢ : p1 L Ly _ "l a
SW(/O |Aa,s(6)] d(5> </0 19/ (8¢ + (1 — 8)Co)| d5>
UW@W+W«MMQQ—QW ujﬂé
. [F(G2: )IF /C g(w)dw| .
O

Remark 2.3. In the Theorem 2.3 with F' = 1 the Theorem 2.4 of [21] is derived. If in
addition, k = a = 1, we obtain the Corollary 2.5 of same paper.

3. CONCLUSIONS

In this paper various new Hermite-Hadamard inequalities have been obtained. The paper
utilized generalized integral operators, to produce results in the class of p-convex functions.
We hope that this work will be an impetus to obtain results for other classes of convex
functions by using generalized integral operators.
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