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A COMPREHENSIVE FAMILY OF BI-UNIVALENT FUNCTIONS
LINKED WITH GEGENBAUER POLYNOMIALS

ABBAS KAREEM WANAS!, SONDEKOLA RUDRA SWAMY?, HUO TANG?,
TIMILEHIN GIDEON SHABA*, JODALLI NIRMALA®, AND ISMAILA OMEIZA IBRAHIM®

ABSTRACT. Making use of Gegenbauer polynomials, we initiate and explore a comprehen-
sive family of regular and bi-univalent (or bi-Schlicht) functions in ® = {z € C : |z| < 1}.
We investigate certain coefficients bounds and the Fekete-Szegé functional for functions in
this family. We also present few interesting observations and provide relevant connections
of the result investigated.

1. INTRODUCTION AND PRELIMINARIES

Let the unit disc {z € C : |z| < 1} be symbolized by ©, where C is the collection of all
complex numbers. Let N := No\{0} = {1,2,3,...} and R be the set of real numbers. The
set of normalized regular functions in ® that have the power series of the form

9(2) = 2+ do2? + d32® + o =2+ i, (L.1)
j=2

be indicated by A and the set of all functions of A that are univalent (or schlicht) in ©
is symbolized by 8. As per the Koebe theorem (see [9]) any function g € 8§ has an inverse
function given by

g Hw) = f(w) = w — daw?® + (2d3 — d3)w® — (5d3 — 5dadz + dy)w? + ...,  (1.2)
such that z = g (g(2)), w = g(g~"' (w)), |w| < ro(g) andro(g) > 1/4, 2,w € D.

A function g of A is called bi-univalent (or bi-schlicht) in ® if g and its inverse g~
are both univalent (or schlicht) in ©. Let ) stands for the set of bi-univalent functions

1

having the form (1.1). Investigations of the family >~ begun few decades ago by Lewin
[20] and Brannan and Clunie [7]. Later, Tan [32] found some initial coefficient estimates of
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bi-univalent functions. Moreover, Brannan and Taha [0] examined certain classical subsets
of 3 in ®. Some interesting outcomes concerning initial bounds for certain special sets of
>~ have been appreared in [1], [2], [8], [14], [15] and [24].

Recently, Kiepiela et al. [19] examined the Gegenbauer polynomials (or ultraspherical
polynomials) C(z). They are orthogonal polynomials on [-1,1] that can be defined by the
recurrence relation

_ 22(j +a = 1)C5(z) — (j + 20— 2)CF o ()
J

where j € N\{1}. It is easy to see from (1.3) that C§(z) = 2a(1 +a)z? — a. For a € R\{0},
a generating function of the sequence C¢(x), j € N, is defined by (see [3]):

C(x)

J

,Ci(x) =1, CY¥(z) = 2az, (1.3)

1
(1 —2zz + 22)*’

o0
Halz, 2) = ZC;?‘(x)zj = (1.4)
j=0
where z € ® and z € [-1,1].
Two particular cases of Cf(z) are i) le (x) the second kind Chebyshev polynomials and

i7) Cj% (x) the Legendre polynomials (See [1]).

Gegenbauer polynomials, Fibonacci polynomials, Pell-Lucas polynomials, Chebyshev
polynomials, Horadam polynomials, Fermat-Lucas polynomials and generalizations of them
have potential applications in branches such as architecture, physics, combinatorics, number
theory, statistics and engineering. Additional information about these polynomials can be
found in [12],[13], [16], [17] and [36]. More details about the famous Fekete-Szeg6 problem
associated with Gegenbauer polynomials are available in the works of [3], [1], [35] and [31].

The recent research trends are the outcomes of the study of function in the class > linked
with any of the above mentioned polynomials, can be seen in [5], [21], [25], [26], [27], [29],
[30], [33] and [31]. Generally interest was shown to estimate the initial Taylor-Maclaurin
coefficients and the celebrated inequality of Fekete-Szegd for the special subfamilies of ).
However, there is little work on bi-univalent functions linked with Gegenbauer polynomials.
To initiate and explore the study on bi-univalent functions linked with Gegenbauer poly-
nomials, we present a comprehensive family of > subordinate to Gegenbauer polynomials
C(x) as in (1.3) with the generating function (1.4).

For regular functions g and f in ®, ¢ is said to subordinate to f, if there is a Schwarz
function ¢ in ®©, such that ¢(0) = 0, [¢(z)] < 1 and g(2) = f(¥(2)), z € ©. This
subordination is indicated as g < f or g(z) < f(z). Specifically, when f € § in ©, then
9(2) < f(2) <= g(0) = (0) and g(D) C (D).

Throughout this paper, the inverse function g~ (w) = f(w) is as in (1.2) and Hs(z, 2) is
as in (1.4).

Definition 1.1. A function g in ) having the power series (1.1) is said to be in the family
SG%(’%T,,U,,JE), 0<y<1,7>1,p1p>0,1/2 <z <1and a € R\{0}, if

Z(g’(z))7+uz2g”(z)
’Yg(z)ﬁ‘(l—f)/)z < Ha(z,2), 2€D
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and
w(f' (W)™ + pw? f (w)
Vf(w) + (1= yw

The family S& (v, 7, 1, ) is of special interest for it contains many well-known as well

< Ho(r,w), w € D.

as new subfamilies of > for particular values of v, 7 and u, as illustrated below:
1. SKC“Z(T,,M, x) = SGC“Z(O, T, b, ) is the set of functions g € > satisfying

(' (2))" + pzg"(2) < Holz,2) and (f'(w))" + pwf’(w) < Ho(z,w), 2, w € D.

2. SL%; (r,p,x) = SGOE‘:(I, T, i, ) is the collection of functions g € > satisfying

Z(g/(z))T u <Z2gg(/,z()2)> < g.fa(sz)j 2€D

and

f(w) f(w)
3. SM% (v,7,2) = 56%(7,7, 1,x) is the family of functions g € Y satisfying

M + 1 <u}2f”(w)> < Ho(z,w), w €D.

2(9'(2))" + 2*9"(2)
v9(2) + (1 —7)z

<Ho(z,2),2 €D

and
w(f' (W)™ + w?f"(w)
V(W) + (1 =y)w
4. The function classes SG%(% 1, u,z) and SG"E‘:(% 0, 1, x) were investigated in [31].

< Ho(z,w), w € D.

Remark 1.1. We note that
i) SK%:(T, lx) = SM%:(O,T, x).
ii) SL%:(T, lx) = SM%:(LT, x).

Remark 1.2. i) For 4 = 0 and 7 = 1, the class SKi(l,O,x) = fHOz‘:(x) was studied by
Amourah et al. [3].

ii) For 4 =0 and 7 = 1, the family SLOE‘:(L 0,z) = Si (z) was introduced by Amourah
et al. [1].

In Section 2, we derive the estimates for |da| , |d3| and the inequality of Fekete- Szego [11]
for functions of the form (1.1) € S (v, 7, 1, z). In Section 3, few interesting consequences

and relevant connections of the result are mentioned.

2. COEFFICIENT BOUNDS AND FEKETE-SZEGO INEQUALITY

We determine the initial coefficients bounds and the inequality of Fekete-Szego for func-
tions in SG%(% T, i, ), in the following theorem:
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Theorem 2.1. Let 0 <~y <1,7>1,u>0,1/2 <z <1 and o € R\{0}. If the function
9 € S65-(7, 7 p, ), then

] < 2|a|zv2x 2.1)
= V1@ A7) =721 = 227) +2(02 +2(7 — ) — 4p(27 + p— 3))az?]’
4az? 2|alz
ds| < + 2.2
4| @u+7)=7)? B2u+7)-"7) (22)
and for 6 € R
L 1-6< 3
ds — 8d5] < { CET gt ST
BT K ey mes e o v e o R ] I
where
5= |@lutr) =71 = 22%) + 200" +2(7 =) = 4p(27 + p — 3))az” (2.4)
432u+1) — y)ax? '

Proof. Let g € S 602 (7,7, i, ). Then, for two regular functions 9%, DN given by

Mz) =miz+mpz? +mzzd+... 2D
and
Nw) =nmw+now? g +..., wed
with 9(0) = 0,9%(0) = 0, |M(2)| < 1 and |MN(w)| < 1,2z, w € D and on account of Definition

1.1, we can write
2(g'(2))" + nz*g"(2)

ORI
and
w(f' (W)™ + pw? [ (w) - N
@ F eI
Or, equivalently
2(9'(2))" + p2*g" () o o o
9 T =)z =14 O (z) + C¢(z)m(2) + CY(x)(m(2))* + ... (2.5)
and
w(f' (W) + pw?f(w) _ o o o
@) E0—w 14 C¥(x) 4+ CS(z)n(w) + CS(z)(n(w))? + ... (2.6)
From (2.5) and (2.6), in view of (1.3), we find
2(g 2,2 "
(w(( ))) +( 1“_ 9)( 2 14 O () 2+ [CF (2)ma + CS (2)m?]2? + . (2.7)
and
APl T @) ) o yng + (O (@) + CF @0 + . (28)

(W) + (1 =7y)w

Clearly, if [9(2)] = [miz +mo2z?2 +m32 4+ .| < 1,2 € ® and [N(w)| = |nw + now? + nzw? +
| <1,w €D, then

fmy| < 1and |ni] < 1(i € N). (2.9)
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We get the following by equating the corresponding coefficients in (2.7) and (2.8):

(2(p+ 1) = v)d2 = CF (z)my, (2.10)
BQRu+7) =z + (v = 2y(u+7) +27(7 = 1)) d3 = Cf (x)ma + C5 (z)mi,  (2.11)
—(2(p+7)=7)d2 = Cf(z)m (2.12)

and
(321 +7) = 7)(2d3 — d3) + (v* = 2y(u + 1) + 27(7 = 1))d5 = CF (a)nz + CF (2)nf. (2.13)
It follows from (2.10) and (2.12) that
m; = —nq, (2.14)

2(2(p +1) = 7)%d3 = (mf +n})(CF (x))”. (2.15)
If we add (2.11) and (2.13), then we obtain
209 + (1 = 7)(27 + 1) +2u(3 — 7))d3 = CF () (mz + n2) + C5 (z)(m] +ni).  (2.16)
Substituting the value of m? + n? from (2.15) in (2.16), we get

P (CE (@) (mo + ) o
2[(v? + (1 =27+ 1) +2u(3 = 1)) (CF(2))* — (2(u + 7) = 7)*CF ()]’
which yields (2.1) on using (2.9).
After subtracting (2.13) from (2.11) and then using (2.14), we obtain
CP (x)(my — 1)
2BQ2p+71) =)
Then in view of (2.15), equation (2.18) becomes
(Cf(x))*(mi +nf)  Cf(z)(my—ny)
22(n+7) =77 2B@2p+7) =)
which gets (2.2) on applying (2.9).
From (2.17) and (2.18), for § € R, we get
1 1
2(3(2u +7) - 7)) m2 (1(5, RRFTEeTE 7)) "

d3 = d3 + (2.18)

ds =

Y

da — 8] = |C7 @) (.2 +

where
(1-6) (Cf (x))?
2[(v? + (T =27 + 1) +2u3 = 7)) (CT(2))? — 2(p + 1) —7)2Cs ()]

In view of (1.3), we conclude that

T(d,z) =

5 @) . .
|ds — 83| < {(3(2u+)v) 0= [30.2) < spm—)

2(CT(@)|[Z(6, z)| 5 [F(0,2)] = Wa
which enable us to conclude (2.3) with J as in (2.4). Thus the proof of Theorem 2.1 is

completed. 0
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Remark 2.1. a) By taking 7 = 1 in the above theorem, we obtain a result of the authors [31,
Theorem 2.1]. Further, setting i) 4 =0, ii) v =0 and iii) v = 1, we obtain Corollaries 2.1,
2.2 and 2.3 of [31], respectively.

b) If we let 1 = 0 in the above theorem, we get another result of the authors [31, Theorem
3.1]. Further, letting i) v = 0 and ii) v = 1, we get [31, Corollary 3.1 and Corollary 3.2].

3. OUTCOME OF THE MAIN RESULT
Theorem 2.1 would yield the following outcome,when v = 0.

Corollary 3.1. If the function g € SK%:(T,,U,, x), then

] < ||z 22
2] )
VI 720 = 22%) — @pu( T 27 = 3) = r)ad?]
a’x? 2\a|z
< 0L 2
(u+7) 32u+71)
and for § € R,
2| . (p+7)?(1-22%) — (2p(p+27-3) —7)ax®
|d _ 5d2| < 3(2p+T) ’ |1 - 5| < ’ 3(2n+7)ow?
8 2= 2a%2% |14 11— o> ’(M+T)2(172m2)*(2u(#+27—73)*‘r)ax2
[(p+1)2(1—222)—2u(p+27—-3)—7)az?| = 3(2u+T)ax? :
Remark 3.1. Corollary 3.1 reduces to Corollary 9 of Amurah et al. [1], when 7 = 1 and
w=0.
Allowing v = 1 in Theorem 2.1, we arrive at the following:
Corollary 3.2. If the function g € SLC“Z(T,u,x), then
] < 2|a|z/2x
=@t ) - D21 - 222) — 2(4p(2r + i —3) — 27 + Dax?|’
4oz’ 2|alx
|d3| < 5
2p+7)—-1)2 32u+71)—-1
and for some § € R,
2|ax . _ N
= a‘z®|1— . ~
[2(u+71)—1)2(1—2x)2—2(4p(27+p—3)—27+1)az?| ’ ‘1 6‘ 2 1
where 3, = ‘(2(/1—&-7')—1)2(I—Qxf&;fféi(x?;-‘ru—ii)—27+1)a:c2 .
Remark 3.2. Corollary 3.2 reduces to Corollary 8 of Amurah et al. [1] (also see [3]), when

7=1and p=0.
Setting ¢ =1 in Theorem 2.1, we have
Corollary 3.3. If the function g € SM%(’}/,T, x), then

] < 2|a|xv2x
= VRO T 7 AP0 27 £ 207 7 67 Sjar|
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40222 olx
+
2(1+7)—7)? 32471)—7

|ds| <
and for § € R,
__lajz . ‘1 _ 5| <3
3(2 — ’ >~ J2
dy — dd5| < "0 8a2z® |1-4| C1—61> 3
AT P02 22—z 6 ez 0 |1~ 01 = J2,

2(1471)—7)?2(1—222)+2(y? —2y—67+8)az?
4(3(2+7)—)ax?

where Jo = ’

4. CONCLUSION

A comprehensive family of regular and bi-univalent (or bi-schlicht) functions linked with
Gegenbauer polynomials are initiated and explored. Bounds of the first two coefficients
|da], |d3| and the celebrated Fekete- Szegd functional have been fixed for the defined fam-
ily. Through corollaries of our main results, we have highlighted many interesting new
consequences.

The contents of the paper on a comprehensive family could inspire further research related
to other trends such as families using ¢ - derivative operator [10], [28], ¢ - integral operator
[18], meromorphic bi-univalent function families associated with Al-Oboudi differential
operator [23] and families using integro-differential operators [22].

Acknowledgements. The authors would like to thank the editor and the referees for their
valuable comments and suggestions on the paper.
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