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BOUNDEDNESS OF FRACTIONAL INTEGRAL OPERATORS
CONTAINING MITTAG-LEFFLER FUNCTIONS

LIAN CHEN!, GHULAM FARID?, SAAD THSAN BUTT?, AND SAIRA BANO AKBAR*

ABSTRACT. This paper studies the fractional integral operators which contain Mittag-
Leffler functions in their kernels, for s-convex functions. The bounds of sum of left and right
sided definitions of these operators are obtained for s-convex functions and differentiable
functions whose derivatives in absolute value are s-convex. It is proved that these operators
are bounded and continuous. Furthermore bounds of these operators are presented in a
Hadamard like inequality.

1. INTRODUCTION

Convex functions are useful in almost all fields of mathematics. Especially in mathematical
analysis, functional analysis and optimization problems, their applications are remarkable.

Definition 1.1. A function f : I — R is said to be convex function, if the following
inequality holds:

flta+ (1 =1)b) <tf(a)+ (1 —1)f(b),
for all a,b € I and t € [0, 1].

A generalization of convex function defined on right half of real line is called s-convex
function given as follows:

Definition 1.2. [3] Let s € [0,1]. A function f : [0,00) — R is said to be s-convex function
in the second sense if

flta+ (1 —=1)b) <t°f(a) + (1 —1)°f(b),
holds for all a,b € [0,00) and t € [0, 1].

For some recent citations and utilization of s-convex functions one can see [2,3,9,19] and
references therein.
Convex functions and related definitions have been widely used to develop the theory of
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inequalities and their applications. A huge amount of work by many authors had/has been
dedicated to theory and applications of mathematical inequalities. An equivalent geometric
interpretation of convex functions is the classical Hadamard inequality.

Theorem 1.1. Let f: I — R be a convex function defined on an interval I. Then for any
a,b e I with a <b the following inequality holds:
a+b 1 b f(a)+ f(b)
< dor < ———~, 1.1
1(50) <57 [ @ < 22 (11)
This inequality provides the upper and lower bounds of the integral mean of a convex

function. It has been studied extensively by various authors and its different versions exist in
diverse fields of mathematics. Since last two decades it is under consideration from fractional
calculus point of view. Sarikaya et al. gave its fractional version by using Riemann-Liouville
fractional integral operators (1.7) and (1.8).

Theorem 1.2. [20] Let f : [a,b] — R be a function with 0 < a < b and f € Ly[a,b]. If f
is a convex function on [a,b], then the following inequality for Riemann-Liouville fractional
integrals holds:

F(*57) = g [ s+ 1 p] < O I0), (1.2

This inequality provides upper and lower bounds of the sum of left and right sided
definitions of Riemann-Liouville fractional integrals at points b and a respectively. Motivated
by this fractional version of the Hadamard inequality a lot of related inequalities have been

published for different known integral operators, see [7, 10,12, 13,15, 17] and references

therein. Farid studied some bounds of Riemann-Liouville fractional integral operators in
variable form, see [5].

The goal of this paper is to derive bounds of integral operators which contain Mittag-Leffler
functions in their kernels in variable form. The Mittag-Leffler function is defined as follows

[11:

0o n
Eo(t) = nz::() Tlan 1 1)’

where t,a € C, R(a) > 0 and I'(.) is the gamma function.

The Mittag-Leffler function is a direct generalization of the exponential function to which
it reduces for &« = 1. In the solution of fractional integral equations or fractional differential
equations the Mittag-Lefler function arises naturally. Due to its importance it is generalized
by various authors, for some generalizations see Remark 1.1. Andrié¢ et al. introduced the
following special Mittag-Leffler function [1]:

Definition 1.3. Let p, «,l,v,¢c € C, R(n), R(a), R(I) > 0, R(c) > R(vy) > 0 with p > 0,
0 >0and 0 < k <6+ R(u). Then the extended generalized Mittag-Leffler function is
defined by:

ke = Bp(y F ke =) (ur 1"
B (p) = nzzo Blr.e=v)  T(un+a) (Dns’ (1.3)

where 3, is defined by B,(z,y) = fol =1 - t)y*16_1<1p—i>dt and (¢)pr = F(?(Sk).
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Derivative of the generalized Mittag-Leffler function is given in following lemma.
Lemma 1.1. [I] If m € Nyw, p, o, l,y,¢ € C,R(u), R(), R(1) > 0,R(c) > R(vy) > 0 with
p>0,0>0and0<k<d+ R(u), then

d m
(dt) [ta—lEZ:iﬁ,C(wt“;p)] — ta—m—lEZ:gvﬁﬁhl(wtu;p) R(a) > m. (1.4)

Remark 1.1. The extended Mittag-Leffler function (1.3) produces the related functions
defined in [14,16,18,21,22], (see [23]).

Fractional integral operators are very useful in the advancement of mathematical inequal-
ities. Recently several authors have established fractional integral inequalities by utilizing
different fractional integral operators [5,7,10,23]. Next we give the definition of integral
operator containing an extended generalized Mittag-Leffler function (1.3).

Definition 1.4. [1] Let w, p,0,l,v,c € C, R(p), R(a),R(l) > 0, R(c) > R(y) > 0 with
p>0,0>0and 0 <k <0+ R(u). Let f € Li[a,b] and z € [a,b]. Then the generalized

fractional integral operators containing Mittag-Leffler function are defined by:
x

(enohe oof ) (wsp) = / (2 — ) BTN (w(w — )5 p) f ()t (1.5)

a

and
b

(250 £) @) = [ (6= o) BN (wolt - ) p) f () (1.6)

T

Remark 1.2. The operators (1.5) and (1.6) produce in particular several kinds of known
fractional integral operators (see [23]).

Riemann-Liouville fractional integral operators are given as follows:

Definition 1.5. Let f € Lj]a,b]. Then Riemann-Liouville fractional integral operators of
order av > 0 are defined as follows:

1 T
e :—/ — )L f(t)dt 1.7
2 @) = o [ @07 @ >a (1.7)
and
@) = o [ i e < (18)
*flx) = == —x , x<b. .
’ I(a) Ja
o,k 6,k
It can be noted that (GZ:&,IZS,MJC) (2;0) =13, f(z) (%Z&lng— f) (x;0) = I f.
From extended generalized fractional integral operators, we have
0.k, . _ 0.k, .
Dy o+ (23p) = (EZ,Q,I,Z,GH) (z3p) = (z — @) E 577 (w(z — a)"; p) (1.9)
0k, Co) 0.k, .
Dy (w3p) = (L350 1) (wip) = (b= ) ELGEL (w(b— 2)5p),  (1.10)
see [6]. The aim of this paper is to produce generalized fractional integral inequalities

by using the generalized fractional integral operators (1.5), (1.6) and s-convex functions.
For some recent citations and utilization of s-convex functions one can see [2,3,9,19] and
references therein.

In the next section bounds of fractional integral operators are established. The boundedness
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of these operators are proved. A new Hadamard inequality for s-convex functions via
generalized fractional integral operators is obtained. The results of this paper are valid for
convex functions defined on right half of real line.

2. BOUNDS OF FRACTIONAL INTEGRAL OPERATORS

The first result is stated and proved as follows:

Theorem 2.1. Let f : [a,b] — R be a real valued function. If f is positive and s-convez,
then for a, 8 > 1, the following fractional integral inequality for generalized integral operators
holds:

(Gl f) @p) + (G555, ) (@:p) (2.1)
< (“’W) (x —a)Dg_1 o+ (x5 p)

 (H021

s+1 > (b—2)Dg_1p-(;p), € [a,0].

Proof. Let © € [a,b]. Then first we observe the function f on the interval [a, z], for ¢ € [a, z]
and « > 1, one can has the following inequality:

- 767k7 - 751k1
(x =) 1Eg7a,l (w(z—t)";p) < (z—a)” 1El,o¢,l “(w(z —a);p). (2.2)

As f is s-convex so for t € [a, z], we have

0= (3220) s+ (2=2) s (2.3)

r—a r—a

First multiplying (2.2) and (2.3). Then integrating over [a, z], we get

i

[ =0 B ot — s (D

- ,0,k, .
(x — 0)° LB 0% (o — a)¥s p)

- (z —a)®

(@ [(@-vrdts f@) [ - oy,

and then we have

0 £ 1)) o)

767k7
(245 1) @i9) < (& = @)Dy s (i) (12

Now on the other hand we observe the function f on the interval [x,b]. For ¢ € [z,b] and
8 > 1, one can has the following inequality

— ,0,k,c — ,0,k,c
(t—a) B (Wt — 2)"5p) < (00— 2) T EV R (w(b — 2) p). (2.5)

Again for t € [z, b] using convexity of f we have

0 < (372) s+ (172 ) . (2.6)

b—=x b—=x
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Multiplying (2.5) and (2.6), then integrating over [z, b], we get

b 0,k
| =2y Bt — ) fegar

(b— )P LB (w(b — 2)P; p) x

< B U0 [ =i @ [0

and then we have

c fb)+ f(x
(85 0) (w39 < (0= 2)Dy 1y (asp) (LI .1
Adding (2.4) and (2.7), the required inequality (2.1) is obtained. 0

Corollary 2.1. If we set a« = ( in (2.1), then we get following inequality:
(ke 1) Gip)+ (35e ) (@) 2.8)
< (W) (‘T - a)Da—l,tﬁL (.fC;p)

f(0) + f(z)
+<s+1

Corollary 2.2. Along with assumption of Theorem 1, if f € Loo[a,b], then we get following
inequality:

) (b= 2o 1y (i) € [a.b],

(Ziﬁfm+f)( p) + (ZZ’?Z}b f)(:v;p) (2.9)
< Wl (0~ 0)D, -y s (w5p) + (0= 2)Dy 1 (5]

Corollary 2.3. If a = 8 in (2.9), then we get following result:

(Gl e 0) @)+ (1255,1) @) (210
s!ﬂka—@akmwmm+w—mDam<%ml

Corollary 2.4. If s =1 in (2.9), then we get following result:
o,k,c é,k,c
(56 f) @p) + (515, ) @) (2.11)

< Hf2’°° [(g: —a)Dy 10+ (@;p) + (b—2)Dp_1 - (f”?p)} '

Theorem 2.2. With the assumption of Theorem 1 if f € Ly[a,b], then operators defined
in (1.5) and (1.6) are bounded and continuous.

Proof. If f € Loo[a,b], then from (2.4) we have

(ol e £) @ )| < 2 fllsclr = al Do (:9) <

2(b — @) Das01 (5:7) 1 loe

) (2.12)
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That is
(€55 ) @p)| < Ml
where M — 2(b*a)DSt11,a+ (bsp)
Therefore (eli’iiﬁ f) (x;p) is bounded also it is easy to see that it is linear, hence this

is continuous operator. Also on the other hand from (2.7) one can obtain

(58, 7) )] < Kl e

2(b—a)D —(a; . . .
where K = (b=a) 35;11,1; (@ p). Therefore (GZ%I;Z; b f) (x;p) is bounded and linear, hence it

is continuous operator. ]

Next result is for functions whose derivative in absolute value are s-convex.

Theorem 2.3. Let f : [a,b] — R be a real valued function. If f is differentiable and |f’|
s s-convex, then for o, > 1, the following fractional integral inequality for generalized
integral operators (1.5) and (1.6) holds:

(05 o f) @ip)+ (€55, F) @) 2.12)

—(Da La+(@5p) f(a) + Dg_q - P)f(b))‘
S('f/ a)l +[f'(z)]
s+1

$_a’ a la“'(ajp)

SO+ 1 (=)
+ (LN -y, i) o € bl
Proof. As x € [a,b] and t € [a, z], by using s-convexity of |f’|, we have
—t\* t—a\?®
)< (2 ) / ( ) (). 2.1
ol (So0) W@l (s2) 17 @) (213)
From (2.13), one can has
t\°* t—a\®
< (2 / (). 2.14
ro < (72) @i+ (=5) 1£6@) (214)
The product of (2.2) and (2.14), gives the following inequality
(@ — )" E O (w(@ — )5 p) £ (t)dt (2.15)

< (z—a)* 2B (w(z — a)"ip) (1F (0)](x — ) + | (2)|(t — a)) .

After integrating above inequality over [a, x|, we get
/ (2 — )" LETR (w(w — £ p) £ (t)dt (2.16)
< (o~ " 2B wla — o'sp11 @) [ @ = Dat+ | @) [ @ - at)

= (o= ) B te — oysp) (D),
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The left hand side of (2.16) is calculated as follows:
[ =t Bl — ) 0t (217)

put z —t = z that is t = xz — z, also using the derivative property (1.4) of Mittag-Leffler
function, we have

r—a 6 k
/0 za_lEZ:&’J’C(wz“;p)f’(:z: —2)dz

a
= @ - @ B e — @@ = [ A ) o - 2

now put x — z = t in second term of the right hand side of the above equation and then
using (1.5), we get

rT—a Sk
/0 BN (Wit p) f(x — 2)dz
— ,6,]{3, 767k7
= (x—a)* ' EL T (w(z —a)*;p) f(a) — (ﬁl,a+f,z,w,a+ f) (23 p).
Therefore (2.16) takes the following form

(Dacrat @sp)) fla) = (05, 0 f) (@ip) (2.18)

LOETCI
s+ 1

<(z—a)Dy_1q+(7;p) (

Also from (2.13), one can has

roz - (=) @i+ (5] 1r@). (2.19)

r—a Tr—a

Following the same procedure as we did for (2.14), we also have
(€550 at F) @3D) = Doy o+ (2:0) f(a) (2.20)
< (¢ =)Dy ) (LD

From (2.18) and (2.20), we get
[(€18he o f) (@50) = Doyt (2:9) f(a)] (2.21)
< (x — a)Dp_1 0t (a5p) (\f’(a)l + \f’(w)l) .

s+1
Now we let = € [a,b] and t € [x,b]. Then by using s-convexity of |f’| we have
t—a\° b—1t\?*
! < — ! —_— ! . 2.22
o< (=) o+ (=) 1f@ 222)
On the same lines as we have done for (2.2), (2.14) and (2.19) one can get from (2.5) and
(1.10), the following inequality:

‘@igi’f,z,w,b— ) (#:p) = D1~ (:0) f (b)‘ (2.23)

< (b—=2)Dg_1-(2;p) (‘f/(b)li |1f/(x)’> :
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From inequalities (2.21) and (2.23) via triangular inequality (2.12) is obtained. O
Corollary 2.5. If we put o = 8 in (2.12), then we get
‘(GZ’,‘Zﬁf’,’w,a+ f) (z;p) + (élziﬁf,,,w,bf f) (z;p) (2.24)
~ (Dacra+(@p)f(a) + Dacrp-(2:0)f (1))

|f' (@) + [ f'(2)] .
< < s+ 1 ) (3: - a)l)a—l,aJr (x,p)

/') + |f'(2)]
+ ( s+1

It is easy to prove the next lemma which will be helpful to produce Hadamard type

) (b— 2)Da_yp- (). € [a,].

estimations for the generalized fractional integral operators.

Lemma 2.1. Let f : [a,b] — R be a s-convex function. If f is symmetric about “T“’, then
the following inequality holds

(550 < e f@. (2:25)

Theorem 2.4. Let f : [a,b] — R, a > b, be a real valued function. If f is positive, s-convex

and symmetric about a;b, then for a, 8 > 0, the following fractional integral inequality for

generalized integral operators (1.5) and (1.6) holds:

o a+b
227 f ( 5 ) D1 (@:P) + Doy (b:p)] (2.26)
767k7c ,5,k,c
< (ez,ﬁ+1,l,w,b_ f) (a;p) + (GZ,OH»I,l,w,aJFf) (ba p)
_ , o ((fla) + f(b)
< [Dy1y (@) + Doy (tip)] (0 0 (H2E))
Proof. For x € [a, b], we have
767 ,C ,6, ,C
(@ —a)?E)5T (w(@ — a)sp) < (b— )’ E)ST (w(b— a);p), 8 > 0 (2.27)
As f is s-convex so for = € [a, b], we have:
r—a\® b—x\°*
< b . 2.2
o< (=2) 1w+ (=) f@ (229)

Multiplying (2.27) and (2.28), then integrating over [a, b], we get

b
[ @ = B o - s p)f(a)da

b—a)PE"RC(w(b — a)H; b b
< ( ) #(gi i)s( )p) [f(b)/a (x—a)sda:+f(a)/a (b—a:)sdazl.

From which we have

¢ ; b
(5 s T) (@ip) < (b= @) ELE(w(b - a); p) <f(a3:[1f()) (2.29)
(eligi’fm,b— f ) (a;p) < (b—a)’Dy_1 - (a; ) (W) : (2.30)
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Now on the other hand for x € [a, b], we have

(b= 2) By @b —2)"p) < (b= a) By (@b —a)'sp)a >0 (231)

Multiplying (2.28) and (2.31), then integrating over [a, b], we get

b 8k
[ e=ar B e -0 fe)d
(b— a)o‘Evzi’f’c(w(b —a)*;p) b . b s
< M(b—a)s [f(b)/a(x—a) da:+f(a)/a(b—a:) dx].

From which we have

0.k,c «a 0.k,c f(a) + f(b)
(A5 s ) (1) < (b= @) ELEA it — aysp) (112 (2.32)
Skc f(a) + f(b)
(ez,ail,l,w,gﬁf) (byp) < (b— a)2Do¢71,a+(b; ) <s+1 . (2.33)
Adding (2.30) and (2.33), we get
,0,k,c 0,k,c
(62,,8—]?-1,1,“;,57 f) (a;p) + (6Z7aﬁ1,lvw,a+f) (b;p) (2.34)
fla)+ f(b
< [Dﬂ—ur (a;p) + Da—l,a*(b;p)} (b—a)? <(2+1()) :
Multiplying (2.25) by (z — a)ﬁEZ:g’f’c(w(:): — a)*; p) and integrating over [a, b]
a+by [° 5 ke
f( : ) / (z — @) B3 (w( — a); p)da (2.35)
1 b o,k,c
< gt [ (@ = B (e - apip)f @),
By using (1.6) and (1.10), we get
a+b 1 S.k.c
f ( 2 ) Dﬁ—l—l,b* (a;p> < F (GZ,5+1,l,w,b_ f) (a;p)' (236)

Multiplying (2.25) with (b — m)O‘EZ:i’f’c(w(b — x)*; p) and integrating over [a, b], also using
(1.5) and (1.9), we get

a+b 1 Sk.c
£(57) Do 08) < s (G045 T) BiD). (2.37)
By adding (2.36) and (2.37), we get;
. a+b
2 1f< 2 ) [DB—&—l,b*(a;p) +Da+1,a+<b;p)} (238)

’67k7 . ?67k’ .
< (X 1) (@) + (255 e f) (bip).

By adding (2.34) and (2.38), inequality (2.26) is obtained. O



BOUNDEDNESS OF FRACTIONAL INTEGRAL OPERATORS... 23

Corollary 2.6. If we put o = 3 in (2.26), then we get

QSlfﬁ(CL;_b> {17a+1¢*(a3P)‘Fl)a+1@+(b§p)} (2.39)

767k7 . ’67k7 ;
< (€Z7a+il,w,b— f) (a;p) + <€Z,a+il,w,a+ f) (b;p)

[Da—l,b* (CLQP) + Da_17a+ (b;p)} (b — a)2 (W) ]

IN

CONCLUDING REMARKS

This work deals with the boundedness of generalized fractional integral operators given
in (1.5) and (1.6), by using s-convex functions. The results of this paper provide the
boundedness and continuity of several known integral operators defined in [14,16,18,21,22].
By applying s-convexity of functions f and |f’| variable bounds of sum of left and right
definitions of these operators are obtained, while by imposing an additional condition of
symmetry a Hadamard inequality is proved. All the results hold for convex functions and
for integral operators given in [14,16,18,21,22]. The method adopted in this paper can be
applied to derive bounds of other kinds of well known integral operators already exist in
literature.
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